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Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:
1. Receives an item with feature vector x; € RY.
eg xx=(2,1,0,1,.)
2. Chooses a price p; for the house.

3. Observes if the house was sold or not.

» if pr < v(xt), we sell and make profit p;.
» if pr > v(x¢), we don't sell and make zero profit.
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Challenges and Assumptions

Learn/Earn or Explore/Exploit:
We don't know the market value v(x;).

Contextual problem:
The product is different in each round and adversarially chosen.

Assumptions:
1. Linear model: v(x;) = 6" x; for § € R¥.
2. The parameter 6 is unknown but fixed.
3. Normalization: ||x¢|| < 1,Vt, ||0] < R.



Goal and Applications

Goal: Minimize worst-case regret.

-
Regret = Z 07 xe — py - 1{p: < GTXt}
t=1

Applications: online advertisement, real-estate, domain pricing, ...
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Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context x; = 1, Vt.
Regret =0T — >, pr - 1{p: < 6}. and 0 € [0,1].

Binary search:

0 P2 p1 1
K> = —eo—a——oH

» after log(1/€) rounds we know 6 € [0, 0 + €].

> sof always sells so:
1 1
Regret < log — + (T — log ) -e=0(logT)
€ €

fore=0O(log T/T).
> Leighton & Kleinberg: Optimal Regret = O(loglog T).
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Contextual Setting : Knowledge Sets

Knowledge sets K;

All 6 compatible with observations so far.
Price ranges p: € [p,, p,]
p, = mingek, 0 x: (exploit price, always sells)

Py = Maxgek, 0" x; (never sells)
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Game: multi-dimensional binary search

Our Goal: Find 0 such that || — 0 < e, since [0 x; — 0T x| < e

for all contexts x;.



ldea # 1

Plan:
Narrow down K; to B(f,¢) and exploit from then on.

Issues with this approach:

» You may never see a certain feature.
» Some features might be correlated.

» Often it is not good to wait to profit.
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Plan:
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Plan:
Explore if there if enough uncertainty about 7 x;.
Compute p; = maxgek, 07 x; and p, = mingeck, 07 x;
and exploit if
P — Bt| <e
Which price to use in exploration:
From 1-dimensional binary search, we can try:

1L/
pi=j (e,

Thm: Regret of this approach is exponential in d.
Intuition: Shaving corners of a polytope in higher dimensions.

T
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ldea # 3

Plan:
Choose the price to split K; in two halfs of equal volume.

Issues with this approach:

» Not easily computable.
» | don't know if it works or not.

» We get K; of small volume: vol(K;) <27
What we want is K; C B(0,¢€)
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Solution: Ellipsoids
Solution:

After cutting K; regularize to its Lowner-John ellipsoid
(same idea as in the Ellipsoid Method).

> We are keeping in the knowledge set some region that are
known not to contain 6.

» Ellipsoids are simpler to control. We have a better grasp of
them since they can be described by a simple formula:

E = {e e R (0 — 60)TAL(0 — 6p) < 1}

for a positive definite matrix A.



Learning Algorithm

Initialize Ag = I/v/R and 6y =0, i.e. Ko = B(0, R).
Implicitly we keep K; = {6; (8 — 6,)TA;71 (0 — 6,) < 1}
For each timestep t:

» Receive feature vector x; € R9.

» Compute P, = mingek, 0 x; and p, = maxgek, 07 x;.

> If p, — p, < € pick price p; = p, (Exploit)

» Otherwise choose p; = % (ﬁt +Bt> (Explore) and update:
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Learning Algorithm

Initialize Ag = I/v/R and 6y =0, i.e. Ko = B(0, R).
Implicitly we keep Ky = {6; (0 — 0,)TA; 10 — 6,) < 1}
For each timestep t:

» Receive feature vector x; € R9.

» Compute P, = mingek, 0 x; and p, = maxgek, 07 x;.
(Solving a Imear system since K; is an ellipsoid)

> If p, — p, < € pick price ps = p, (Exploit)

» Otherwise choose p; = % (ﬁt +Bt> (Explore) and update:

d2
A= -0 (A= -2 T
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and 04,1 =0; £ de where b = —0; + argmax(,eKﬁ Xt.



Main Theorem

Strategy for proving low regret
Guarantee a small number of exploration steps.

Lemma: If we explore for more than O (F\’d2 log (%)) steps, then
K: will be contained in a ball of radius €. From then on, the
algorithm will only exploit.

Theorem: Regret < O(Rd?log T) for ¢ = Rd?/T.
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Proof strategy

» We know vol(Kyy1) < e~ ¥ (d+Dvol(Ky).

» We need a bound on the width, which is
maXxgek, 0T x — Mingek, 07 x.
Corresponds to bounding the eigenvalues of A;.
> We know vol; = ¢y - /T[; \f = e /(4+1)_If we show that

the smallest eigenvalue doesn't decrease too fast, then all the
eigenvalues must eventually be small.

» We need to use the fact we never cut along directions that

have small width, where width =5, —p_.



Controlling eigenvalues (high level details)

» Given eigenvalue of A; we want to bound the eigenvalues of

d2
A= -3 (A= -2 7
t+1 d2+1<t d—l—lb >

~~

Biy1

» If Al > ... > X[ are the eigenvalues of A;, then the
characteristic polynomial of B;1 is:

SOBtJrl( ) H(A _X ll_ﬁZA ]

J

%’BHI

> )\Zﬂ > AL iff @g,,, (%AZ) > 0. We show that this

inequality holds whenever X} is small enough and b'x >e.



Connections

1. Contextual Bandits: We have a contextual bandit setting
with adversarial context and a discontinuous loss function:

A

loss

p

2. Out of the shelf contextual learning algorithms obtain
O(ﬁ) regret, are more computationally expensive, but don't
assume that 0 is fixed, instead they seek to be competitive
against the best 6:

-
Regret = meaxZOTXt {07 < ve} — pe - 1{pe < v¢}
t=1

3. Quantum states (?): Probing a buyer if he will buy at a
certain price shares similarities with probing a quantum state
with a linear measurement.



Lower bounds and Open Problems

1. A lower bound of Q(d loglog T) can be derived from
embedding d independent instances of the 1-dimensional
problem (feature vectors are coordinate vectors).

2. Other applications of multi-dimensional binary search.
3. Stochastic setting: 0 ~ F, x ~ D.



Thanks !



