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Creating an Ads campaign ...

Google AdWords

Bidding and budget

Bidding option (z» Basic options | Advanced options
O 1 manually set my bids for clicks
® AdWards will set my bids to help maximize clicks within my target budget

[] CPC hid limit 23 §

Budget 7)) g per day

Actual daily spend may vary. (2
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engineering fix to adapt
the original auction to
the budgeted setting.
Original game theoretic
analysis is now lost.
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How to deal with budgets in practice ?

Polyhedral
Clinching
Auction

Goal:

Design an auction for AdWords
that supports budgets natively,
I.e., budgets are built in the
game theoretic analysis



What do we mean by budgets ?
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Classical quasi-linear utility function:
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Very well understood: VCG, affine maximizers, ...

Budget constrained utility function:
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Classical quasi-linear utility function:

Very well understood: VCG, affine maximizers, ...

Budget constrained utility function:
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Surprisingly little is known.
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Goal: Design auctions for budget
constrained agents

» Agents report values and budgets (v;, B;)

* Mechanism decides on allocation and
payments for each player (z;, p;)

» Requirements: i < B;

(3313...3{17”) c P
(feasible set)



Desirable properties

* Incentive Compatibility:
v; 2 (v, v_) — pi(vi,v_y) > v (v, v_y) — pi(vi, v_;)

assumption: budgets B; are public

* Individual rationality: Uiﬂfq:(?f?:a’i}—qz) —pz‘(%;’i}—i) >0

* Pareto optimality:

An outcome (x,p) is Pareto-optimal if there
is no (x’,p’) such that u’. 2 u,, 2p’. 2 2p, and
at least one of them is strict.
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Our main contribution

Solve this problem for a large class of
feasible sets P : (scaled) polymatroids.

Show this is impossible to be extended to
general polytopes.

Conjecture: scaled polymatroids are the
largest class for which this is possible.
(we supply evidence for that)
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What do we know about budgets?

[Dobzinski, Lavi, Nisan, FOCS’08]
:: auction for one divisible good

[Fiat, Leonardi, Saia, Sankowski, EC’11]
.: auction for matching markets

nased on the clinching auctions framework
Ausubel, AER’97]
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How does it fit in our goal ?

[Dobzinski, Lavi, Nisan, FOCS’08]
P={z € RY;)> .z, < 1} Uniform Matroid

[Fiat, Leonardi, Saia, Sankowski, EC’11]
P = Transversal Matroid

For AdWords and other more complicated
markets, we need to solve it for more
generic feasibility constraints P
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* Individual Rationality
* Budget Feasibility

e Pareto Optimality
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Our Results

We provide an auction with all the
desirable properties for any polymatroid P.

Our auction only needs oracle access to the
submodular function f.

Our auction has a natural geometric flavor.
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Our results

The set of (z1,...,x,)that can be
obtained this way form a polymatroid. We
call it the AdWords Polytope.

General model:
* multiple slots
* multiple keywords
* easy to generalize



Also on Sponsored Search with Budgets

Independently, [Colini-Baldeschi,
Henzinger, Leonardi, Starnberger, 2012]
design an auction for sponsored search
with one keyword, multiple slots and

budgets.



Our auction

(L]

polytope of
feasible allocations
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Our auction

In each step compute demands d; at price P
B;em
%

d?j —

if P <v;:and0 o.w.

Compute clinched amount 0,

pi = pi + 0 B, = B; — po;



Computing clinched amounts 0;

What is the
allocations that
are still feasible
at this point?




Our auction: how to implement clinch ?

How much can

| allocate to 1
without harming
player 2?
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P?’d(ﬂj‘z) — {x_@- - RT}\Z, (:U@,a:'_@-) < Pp,d}

;d( i) 2 ;d( z,) if x; < T

Clinching step §; = sup{x; > 0; Pé,d(xi) — P;jd(O)}

Theorem: Clinching as defined above results in a feasible

allocation. If P is a polymatroid, 6, can be computed efficiently
using submodular minimization.




Our auction: how to implement clinch ?

;:d(l‘i) — {93—?: < R{fm; (Cﬂ'@,x—z‘) = Pp,d}

Pjﬁd(as@) D P;?d(i??;) if ©; < x

Clinching step §; = sup{x; > O;P;’d(wi) — ;?d(())}

Theorem: Clinching as defined above results in a feasible

allocation. If P is a polymatroid, 6, can be computed efficiently
using submodular minimization.

[in practice there are more efficient algorithms for each case]



Summary of the proof

 Show clinching is well-defined and can
be computed efficiently

 Characterize Pareto-optimal outcomes
for polymatroidal environments

 Show that the auction produces an
outcome satisfying the characterization



Extensions and Limits
Going beyond polymatroids...



General convex environment
One budget-constrained player

For a single budget constrained player (and
many other unconstrained ones), it is

possible do design an auction for any
convex environment.
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What about 2 budget constrained players ?

Weak impossibility: There is no auction
following the clinching framework beyond
(scaled) polymatroids.

Stronger impossibility: There exists a class
of polytopes, for which no auction exists
satisfying all the desirable properties.

No hope of an auction for a general polyhedral environment.



Impossibility for decreasing marginals
Single divisible good: {z € R"}; > . x; < 1}

Decreasing marginal valuations

A V() A Vi (T5)




Impossibility for decreasing marginals
Single divisible good: {z € R"}; > . x; < 1}

Thm: No auction with all the desirable
properties for one divisible good with
decreasing marginals.

Strengthens previous impossibility results of
[Lavi, May’11] and [Fiat et al’11]
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Impossibility for
general polytopes
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Characterization of

(2,2) Pareto Optimal Auctions
in general polyhedral >
environments

Impossibility for
decreasing-marginals
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Positive results

Su mma ry for one budget-constr
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Impossibility for

decreasing-marginals
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Thanks !



