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Can we design dynamic mechanisms 
that don’t need to predict the future and yet 
have revenue comparable to mechanisms 

that know the future?
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Problem Setup
• Items arrive in sequence.

• One seller and many buyers: item sold when it arrives.

• Each item type has an distribution, e.g.      

⇠ F1 ⇠ F2 ⇠ F3

• Buyer’s utility: 
• allocation 
• payment

U =
P

t vtxt � pt

xt 2 [0, 1]
pt � 0

• The value for the t-th item is realized at time t.

one



• Sells one item at a time, without memory of the past or 
knowledge about the future : each auction is a standard 
Myersonian problem. 

• Revelation principle: focus on mechanism specified as 
             and subject to two constraints: 

• Incentive compatibility: 
 

• Individual rationality: 
 

• Simple recipe to  
e.g. if F = U[0,1], price at 1/2.

Static Seller

x(v), p(v)

v = argmaxv̂v · x(v̂)� p(v̂)

v · x(v)� p(v) � 0

maxv⇠F [p(v)]



• Mechanism is now described as a function of the reports 
in this and prev rounds: 

• Linking independent problems together can improve 
revenue and efficiency [Jackson-Sonnenschein, Manelli-
Vincent, Papadimitriou et al]. 
• arbitrarily more revenue 

Dynamic Seller
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• Mechanism is now described as a function of the reports 
in this and prev rounds: 

• Linking independent problems together can improve 
revenue and efficiency [Jackson-Sonnenschein, Manelli-
Vincent, Papadimitriou et al]. 
• arbitrarily more revenue 

Dynamic Seller

xt(v1..t), pt(v1..t)

• Incentive constraint: buyer is better of reporting his true 
type in each round. 

• Individual rationality: buyer derives non-negative utility 
from the mechanism. P

t vtxt � pt � 0



• Incentive constraint: buyer is better off reporting his 
true type in each round. 

• Backwards induction: last round he is better off reporting  
his value conditioned on history: 
 
 
Before to last period: 
 
 
where

Dynamic Incentive Compatibility

vT = argmaxv̂vTxT (v1..T�1v̂)� pT (v1..T�1v̂)

vt = argmax uT�1(vT�1; v1..T�2v̂) + EvT u⌧ (vT ; v1..T�2v̂vT )
effect of my 

report in this round
expected effect of my 
report in next round

ut(w; v1..t) = w · xt(v1..t)� p(v1..t)



• Incentive constraint: buyer is better off reporting his 
true type in each round. 

• Dynamic Incentive Compatibility: 
 
 
 
 

where 

Dynamic Incentive Compatibility

ut(w; v1..t) = w · xt(v1..t)� p(v1..t)

vt = argmax ut(vt; v1..t�1v̂) + Evt+1..T [

PT
⌧=t+1 u⌧ (v⌧ ; v1..t�1v̂vt+1..⌧ )]

effect of my 
report in this round

expected effect of my 
report in future round



• Revenue maximization                          s.t IC and IR. 
• Solving this LP/DP requires knowledge 

about the future. 

• Selling two apples,        
• Optimal static: price each at 1/2, 

optimal revenue is 0.5. 
• Improved dynamic: 

• elicit    and sell first item for 1/2 
• charge                            to inspect the item 

and then post price                  . 
• Total revenue = 0.617

Clairvoyant Seller

⇠ U [0, 1]

1�
p

2f + 1/4

v1

maxE[
P

t pt(v1..t)]

f = min((v1 � 1/2)+, 3/8)



• Optimal dynamic mechanism via dynamic programming 
[Papadimitriou et al, Ashlagi et al, Mirrokni et al]. 

• Optimal auction requires clairvoyance: allocation in the 
first period depends on distribution    .  

• In practice, information about the 
second item might not be available 
when we are selling the first item. 

• Requires buyer to have the same belief 
about the future as the seller.

Clairvoyant Seller

F2



• Seller doesn’t know the future. 

• Buyer doesn’t need to agree with the seller about 
how the future looks like. 

• Mechanism now has the following form: 
 
 
where       {                  … }  

• How does it look like ? 
• t=1 :      use  
• t=2 :      use 

Non Clairvoyant Seller

xt(v1..t, ✓1..t), pt(v1..t, ✓1..t),

✓t 2

x1(v1, ), p1(v1, )
x2(v1, v2, , )



World 1 : 

Power of clairvoyance
World 2 : 

x2(v1, v2, , )x2(v1, v2, , )

x1(v1, ) x1(v1, )

World 2 : 

x2(v1, v2, , )x2(v1, v2, , )

World 1 : 

x1(v1, , )
x1(v1, , )



• Non-Clairvoyant Dynamic Incentive Compatibility: if the 
auction is dynamic incentive compatible for every 
sequence of items 

• e.g static auction is Non-Clairvoyant DIC 

• Can we get revenue comparable to 
the optimal clairvoyant mechanism ?

Non Clairvoyant Seller



• Define a non-clairvoyant auction. 
• Pick a sequence of items: 
• Evaluate NC auction for this sequence. 
• Evaluate optimal clairvoyant auction 

for this sequence.

Non Clairvoyant Revenue Approx

   -Revenue approximation: if for every 
sequence of items: 
↵

NCRev(items) � ↵ · CRev(items)



Non Clairvoyant Revenue Approx
Theorem: Every non-clairvoyant policy is at most a 1/2- 
            approximation to the optimal clairvoyant revenue.

Theorem: For multiple buyers there is a non-clairvoyant  
            policy that is at least 1/5-approx to the opt  
            clairvoyant.



Non Clairvoyant Revenue Approx
Theorem: Every non-clairvoyant policy is at most a 1/2- 
            approximation to the optimal clairvoyant revenue.

Theorem: For multiple buyers there is a non-clairvoyant  
            policy that is at least 1/5-approx to the opt  
            clairvoyant.

� 1

5
·



Non Clairvoyant Revenue Approx
Theorem: Every non-clairvoyant policy is at most a 1/2- 
            approximation to the optimal clairvoyant revenue.

Theorem: Can be improved to 1/2 for two periods and for   
            1/3 for one buyer and multiple periods.

Theorem: For multiple buyers there is a non-clairvoyant  
            policy that is at least 1/5-approx to the opt  
            clairvoyant.



Non Clairvoyant Revenue Approx
Theorem: Every non-clairvoyant policy is at most a 1/2- 
            approximation to the optimal clairvoyant revenue.

Theorem: Can be improved to 1/2 for two periods and for   
            1/3 for one buyer and multiple periods.

Theorem: For multiple buyers there is a non-clairvoyant  
            policy that is at least 1/5-approx to the opt  
            clairvoyant.



Technique: Bank Account Mechanisms

Theorem: Every non-clairvoyant policy is “isomorphic” 
            to a bank account mechanism.

• Keeps a state variable    (balance) for each buyer 
• Chooses a per-period IC mechanism based on balance 
 
 

  with the balance-independence property  
 

• Updates balance:

bt

xt(vt, bt), pt(vt, bt)

0  bt+1  bt + [vtxt � pt]

E[vtxt(vt, bt)� pt(vt, bt)] = const � 0
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Technique: Bank Account Mechanisms

Theorem: Every non-clairvoyant policy is “isomorphic” 
            to a bank account mechanism.

Other nice properties: 
• framework to design and prove lower bounds on 

dynamic mechanisms 
• computationally efficient (multi-buyer, multi-item) 
• no pre-processing required (LP or DP)

b⇤t
bt



1/3-approximation policy
Keep a variable   called balance initialized to zero. 
For every period t, receive an item with distribution  
Sell 1/3 of the item with each of the following auctions: 
• Myerson’s auction for  
• Give the item for free and increment balance 
• For                            

    charge    before the buyer can see the item 
    post a price of     such that  
    decrement balance 

b

Ft

Ft

b = b+ vt

f
f = min(b,EFt [vt])

r E(vt � r)+ = f
b = b� f



1/3-approximation policy
Keep a variable   called balance initialized to zero. 
For every period t, receive an item with distribution  
Sell 1/3 of the item with each of the following auctions: 
• Myerson’s auction for  
• Give the item for free and increment balance 
• For                            

    charge    before the buyer can see the item 
    post a price of     such that  
    decrement balance 

b

Ft

Ft

b = b+ vt

f
f = min(b,EFt [vt])

r E(vt � r)+ = f

Balance independence property: E[utility] is balance independent.
b = b� f



Motivation
Dynamic Mechanisms offer a great promise for ad auctions. 
• improved revenue, efficiency and match-rate. 
• once an ad impression comes, we can estimate 

distribution from cookies and other metadata 
• we can’t run expensive DPs 
• we can’t rely IC on buyers trusting our forecasts.



Larger program 
Make dynamic auctions more friendly to industrial auction 
environments. Some other work: 

• Martingale Auctions  
(Balseiro, Mirrokni, PL) 

• Dynamic Second Price Auctions with Low Regret 
(Mirrokni, PL, Ren, Zuo) 

• Dynamic Revenue Sharing 
(Balseiro, Lin, Mirrokni, PL, Zuo) 

• Dynamic Mechanism Design under Positive Commitment  
(Lobel, PL)



Thanks

Non Clairvoyant Mechanism Design 
https://ssrn.com/abstract=2873701 
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