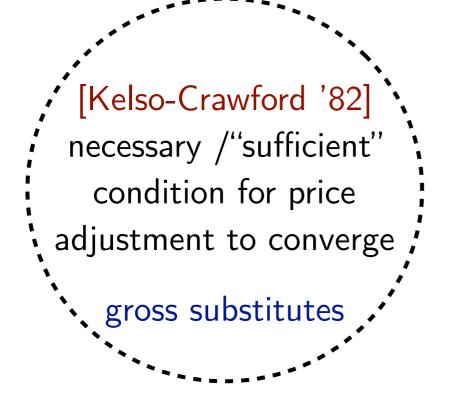
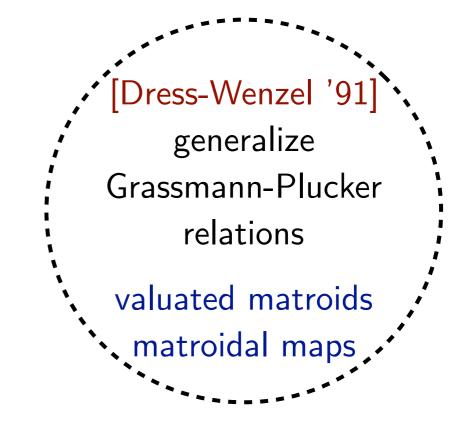
Gross Substitutes Tutorial

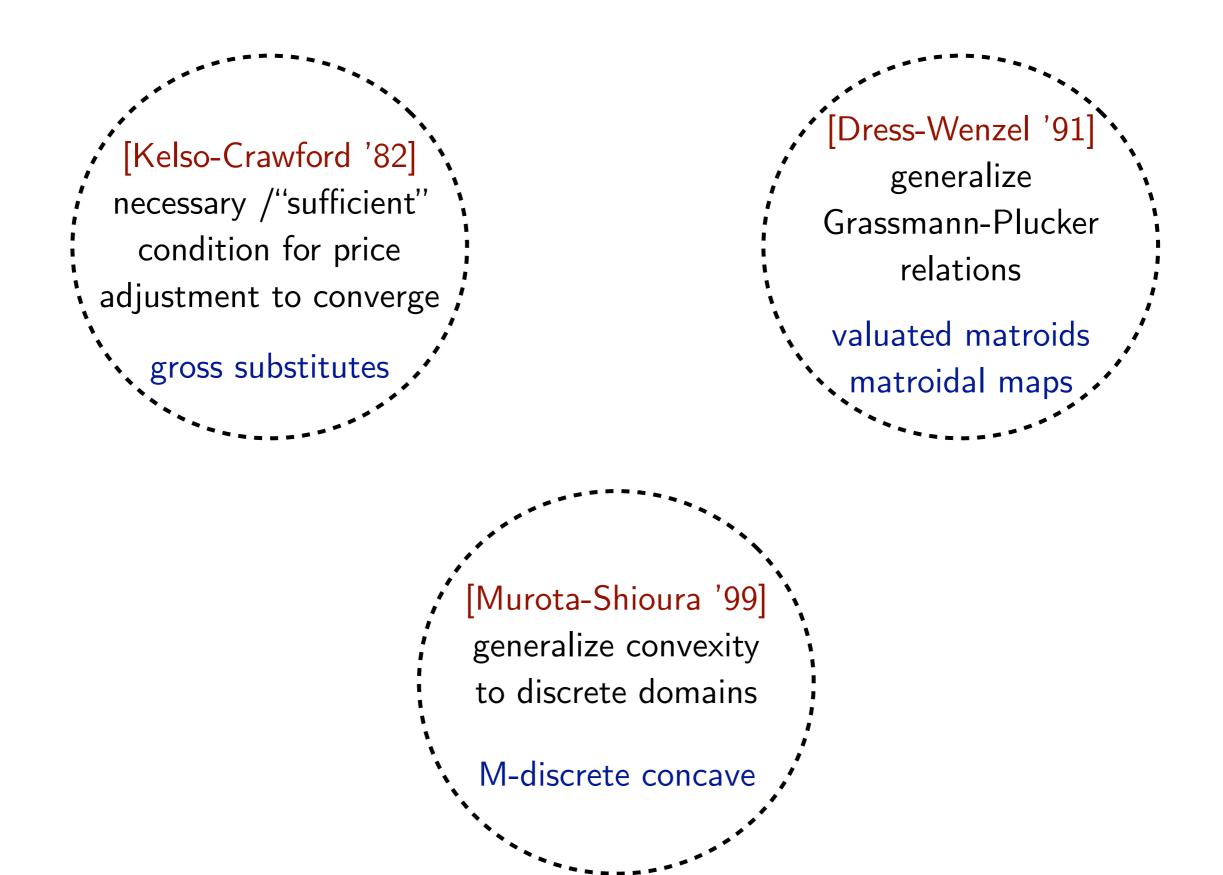
Part I: Combinatorial structure and algorithms (Renato Paes Leme, Google)

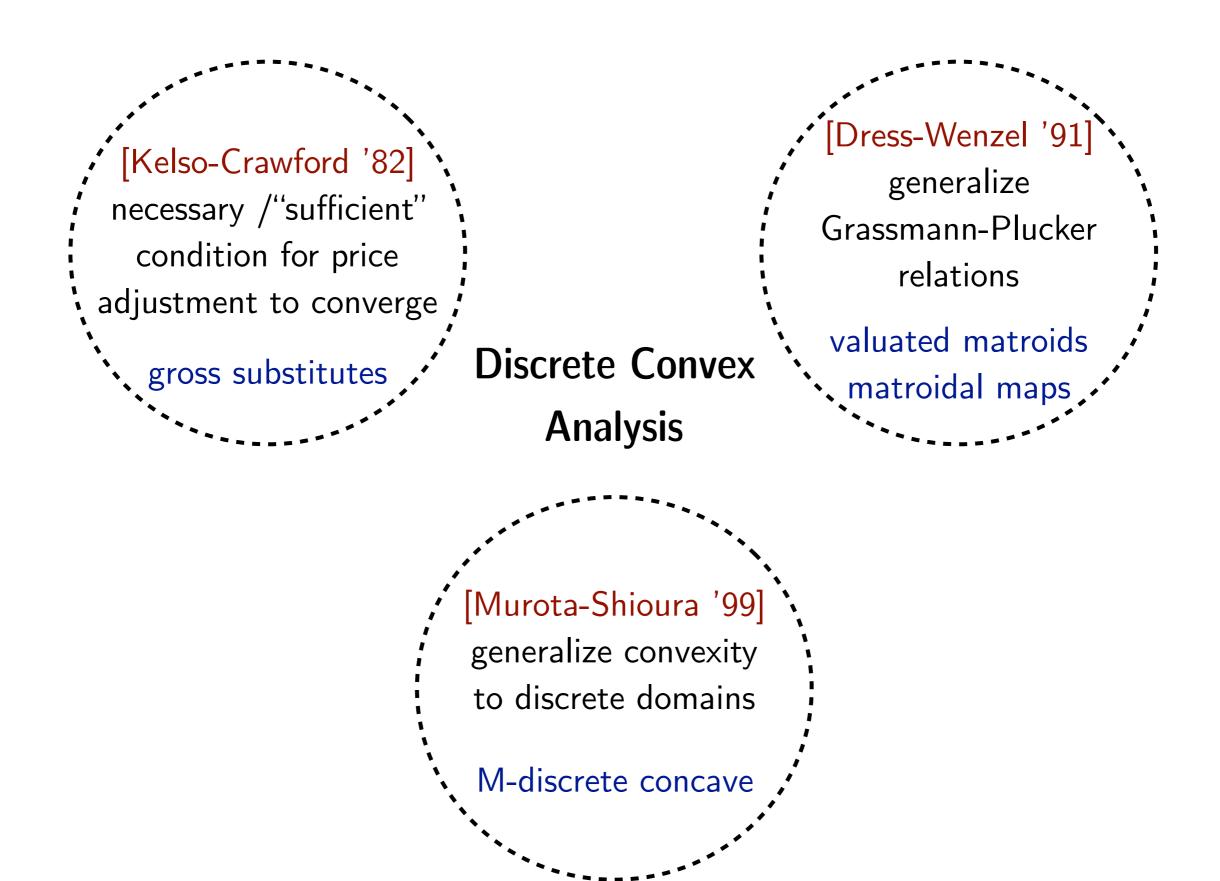
Part II: Economics and the boundaries of substitutability (Inbal Talgam-Cohen, Hebrew University)

[Kelso-Crawford '82] necessary /"sufficient" condition for price adjustment to converge gross substitutes









Some notation to start

- Discrete sets of goods: $[n] = \{1, \ldots, n\}$
- Valuation function $v:2^{[n]} \to \mathbb{R}$
- Given prices $p \in \mathbb{R}^n$ define $v_p(S) = v(S) p(S)$
- Demand correspondence $D(v;p) = \operatorname{argmax}_{S} v_p(S)$
- Demand oracle $\mathcal{O}_D(v,p) \in D(v;p)$
- Value oracle $\mathcal{O}_V(v,S) = v(S)$
- Marginals $v(S|T) = v(S \cup T) v(T)$

 v_1

 v_4

• Valuations $v_i: 2^N \to \mathbb{R}$

m buyers

 v_1

*v*₃

 v_4

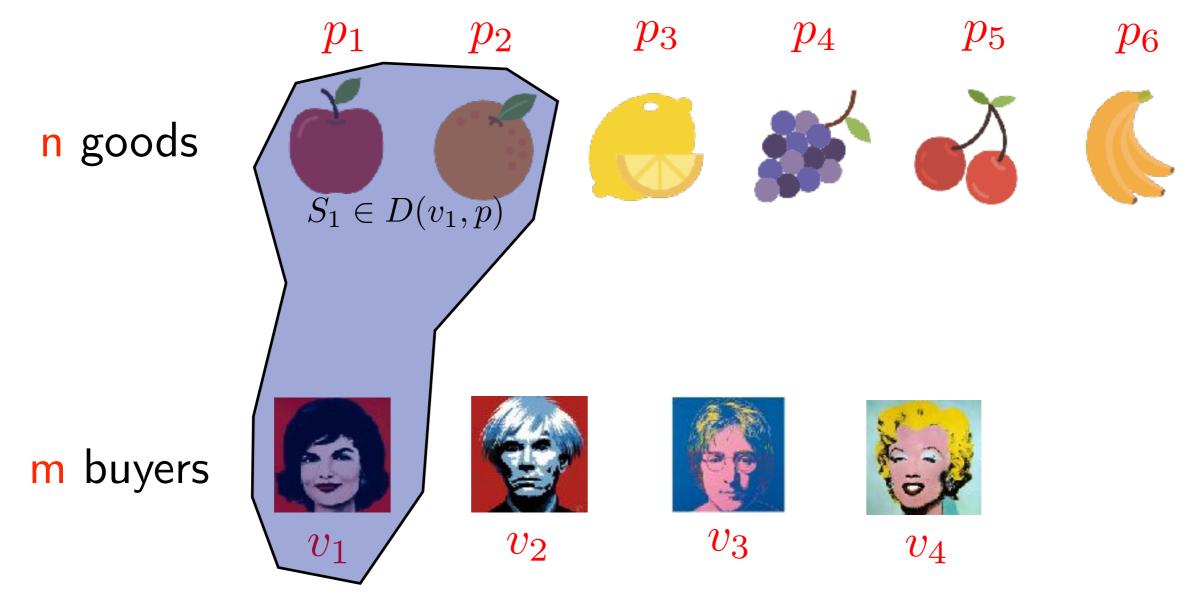
• Valuations $v_i: 2^N \to \mathbb{R}$

 v_4

• Valuations $v_i: 2^N \to \mathbb{R}$

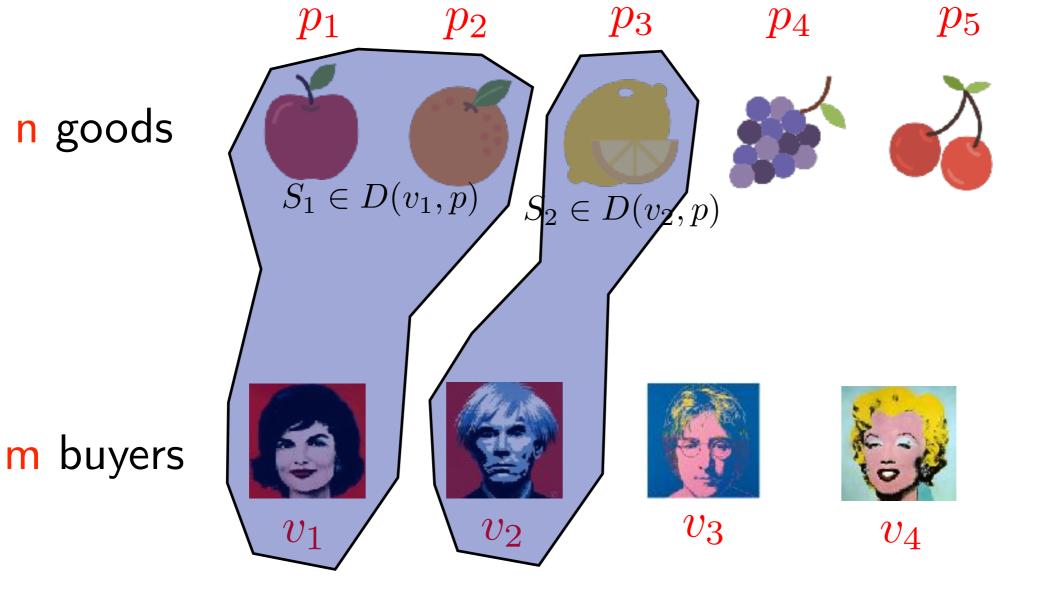
 v_1

• Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) - \sum_{i \in S} p_i]$

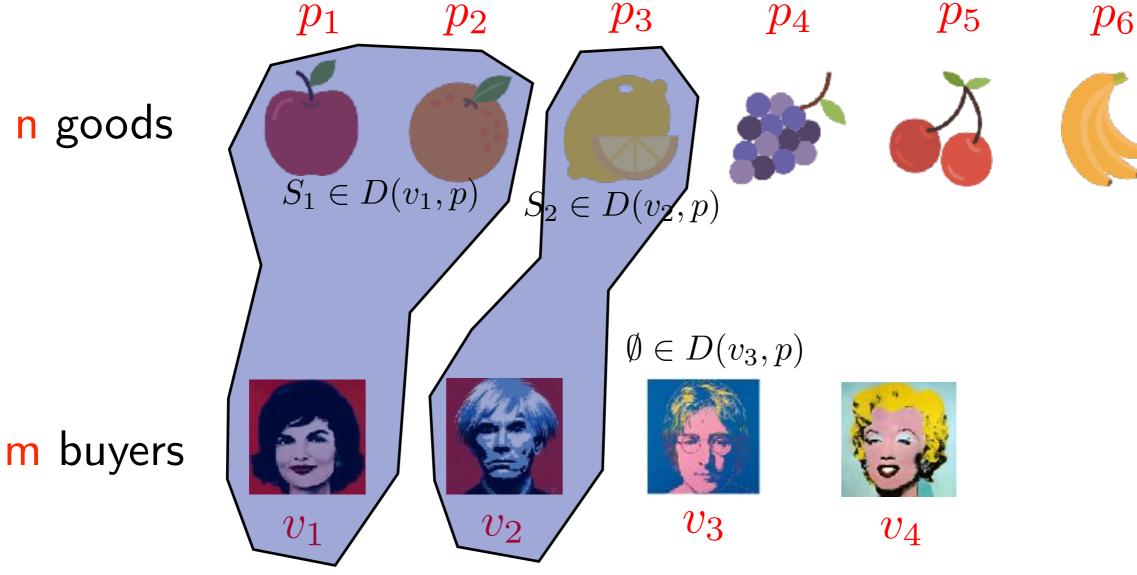


- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$

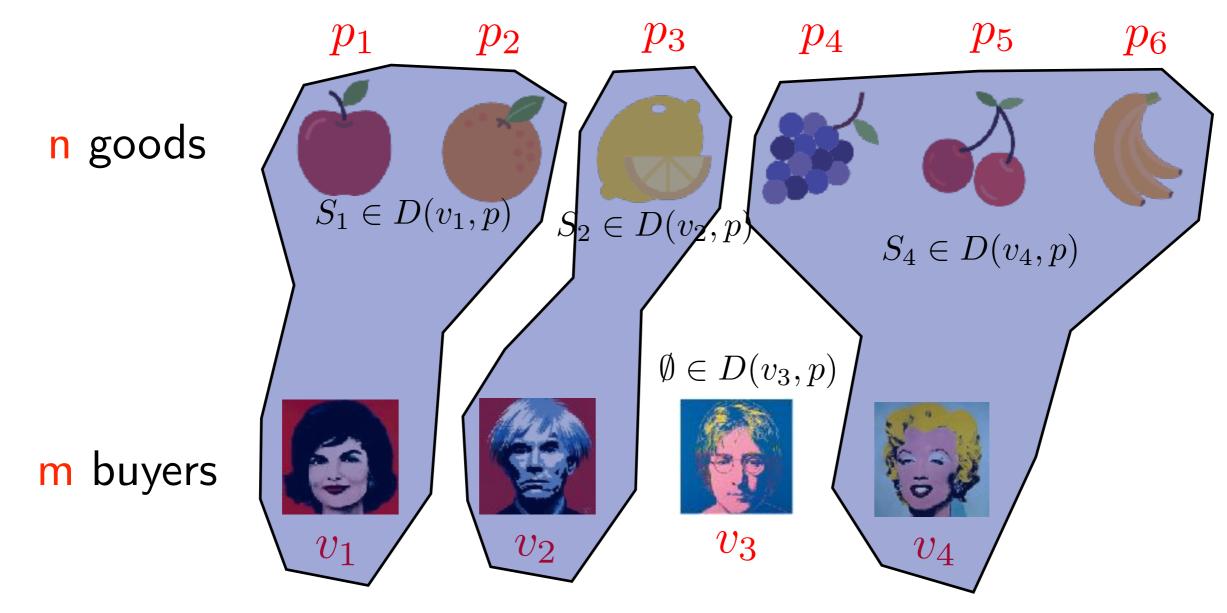
 p_6



- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$



- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subset N} [v_i(S) \sum_{i \in S} p_i]$ \bullet



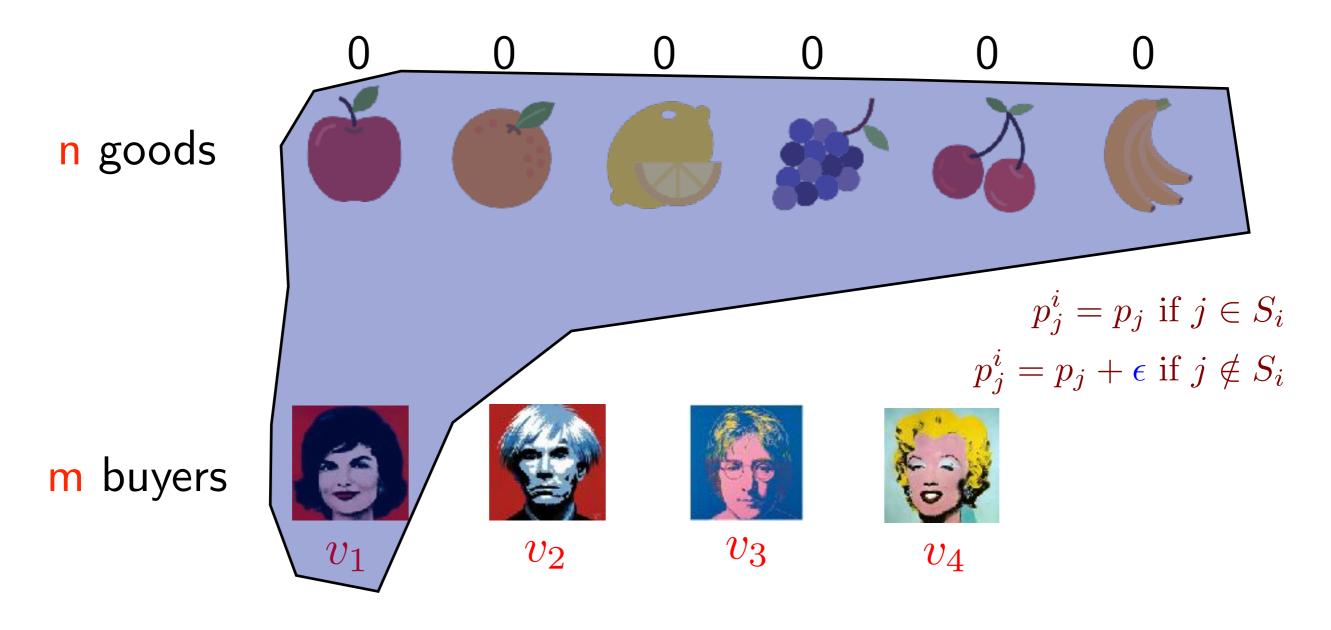
- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$

• Market equilibrium: prices $p \in \mathbb{R}^n$ s.t. $S_i \in D(v_i, p)$ i.e. each good is demanded by exactly one buyer.

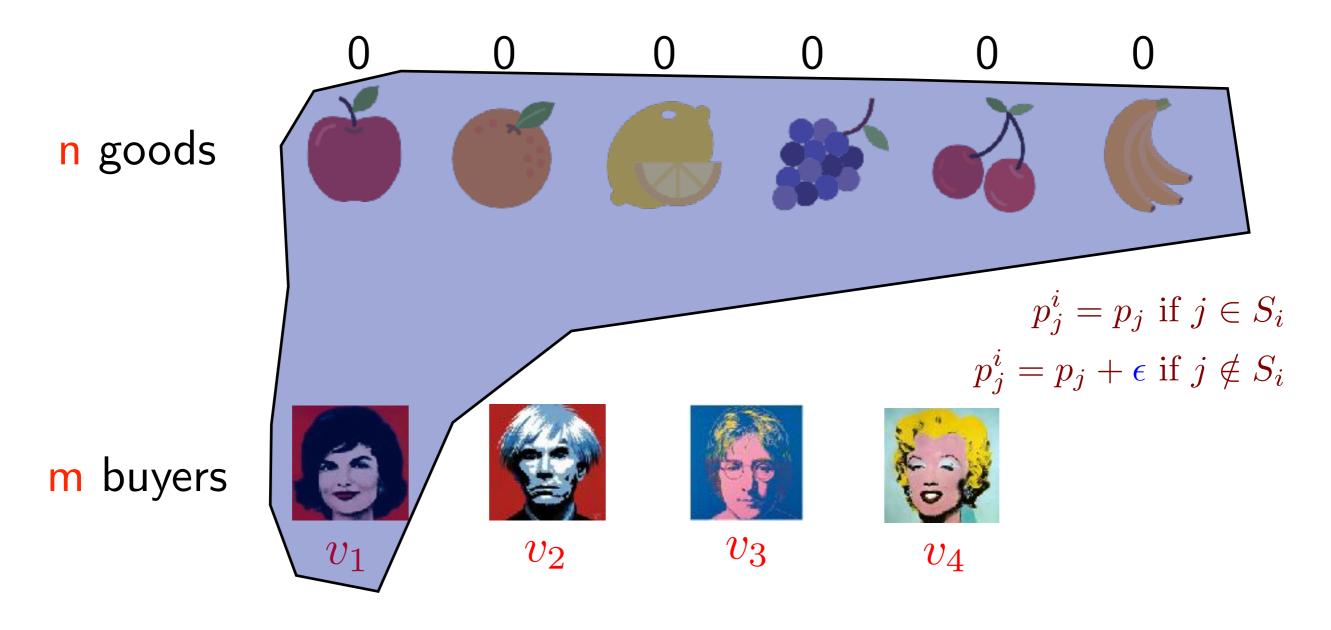
First Welfare Theorem: in equilibrium the welfare $\sum_{i} v_i(S_i)$ is maximized.

(proof: LP duality)

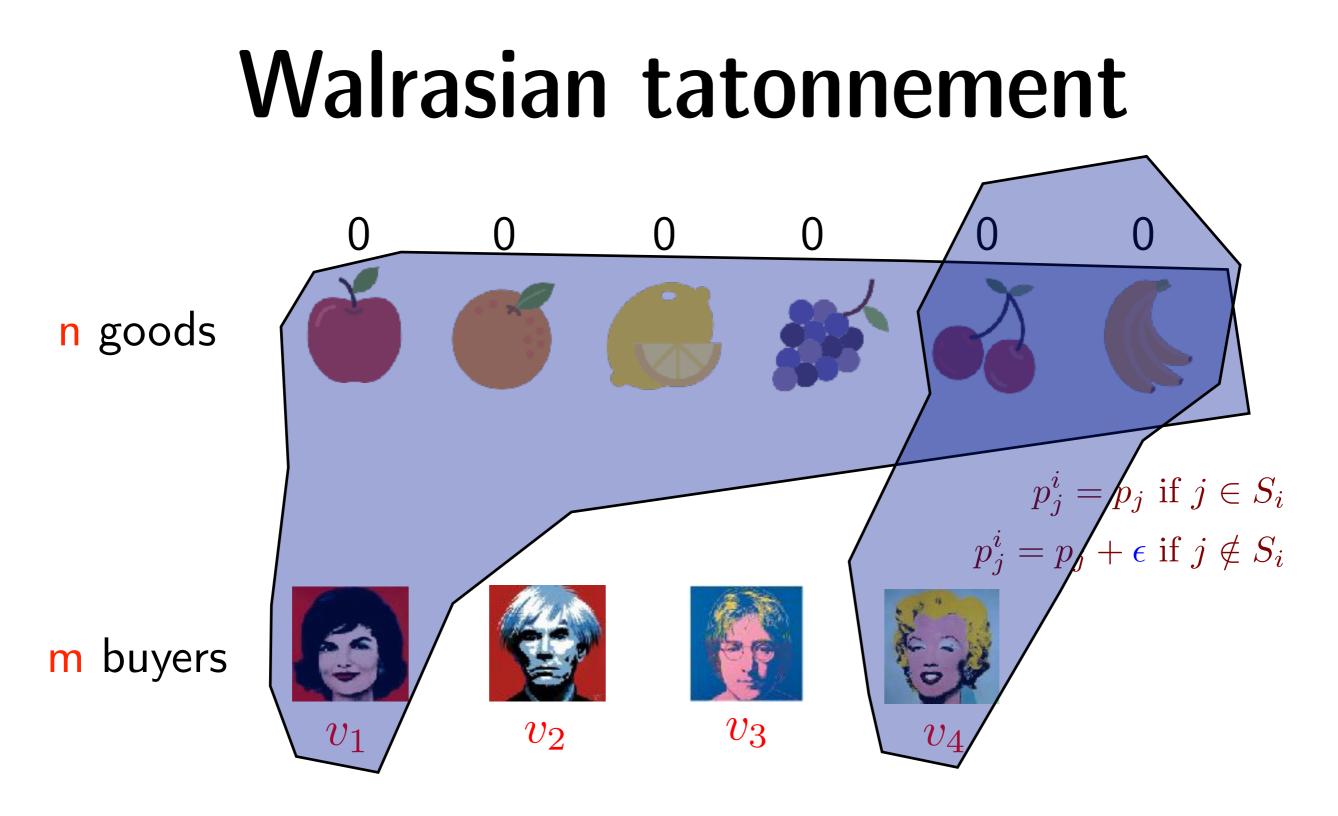
When do equilibria exist ? How do markets converge to equilibrium prices ? How to compute a Walrasian equilibrium ?



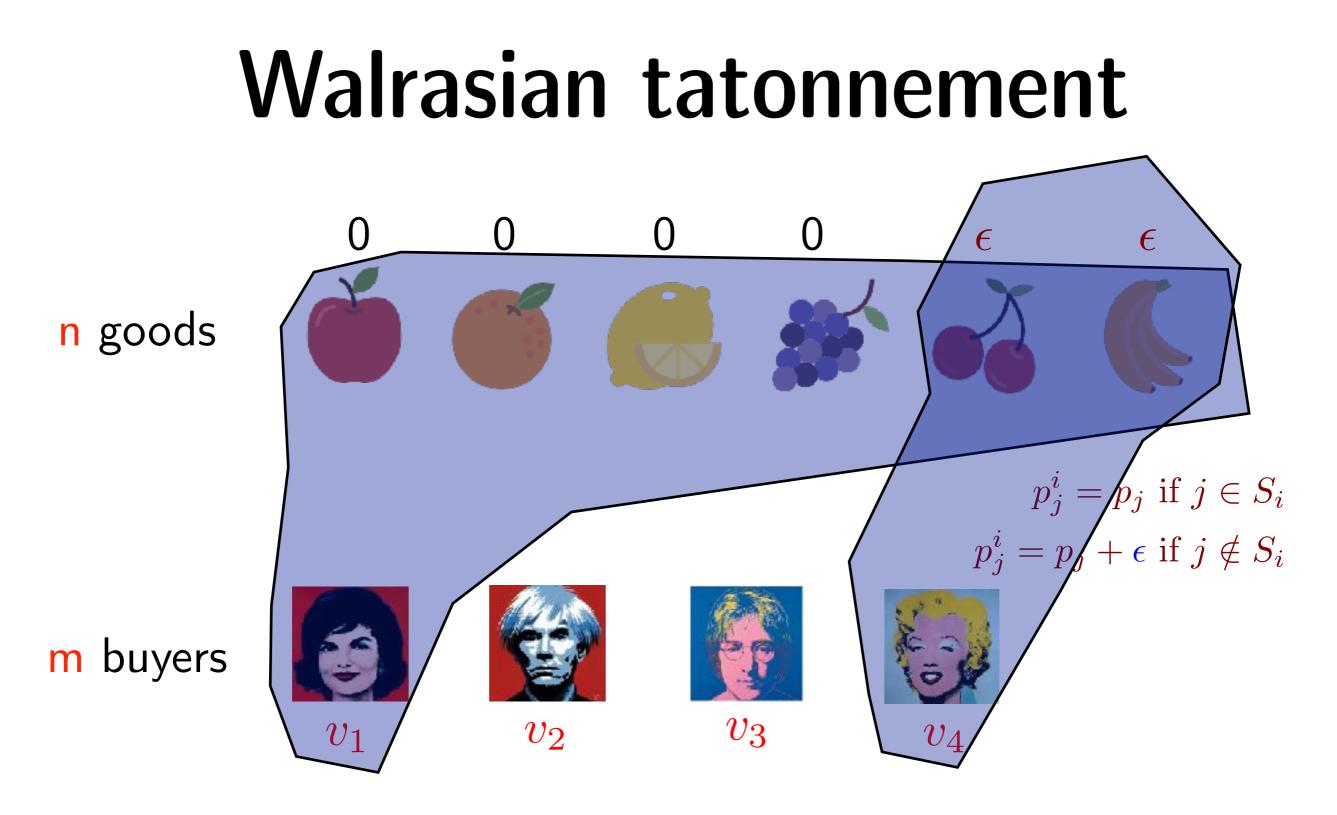
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .



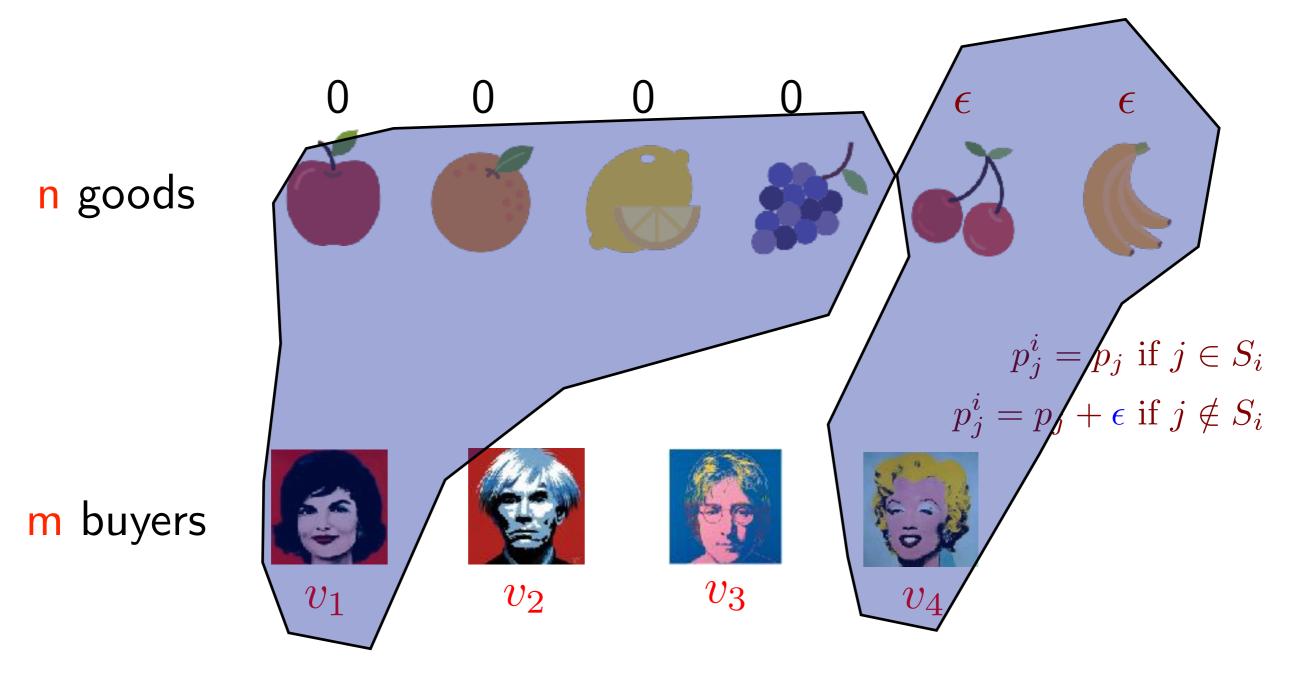
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .



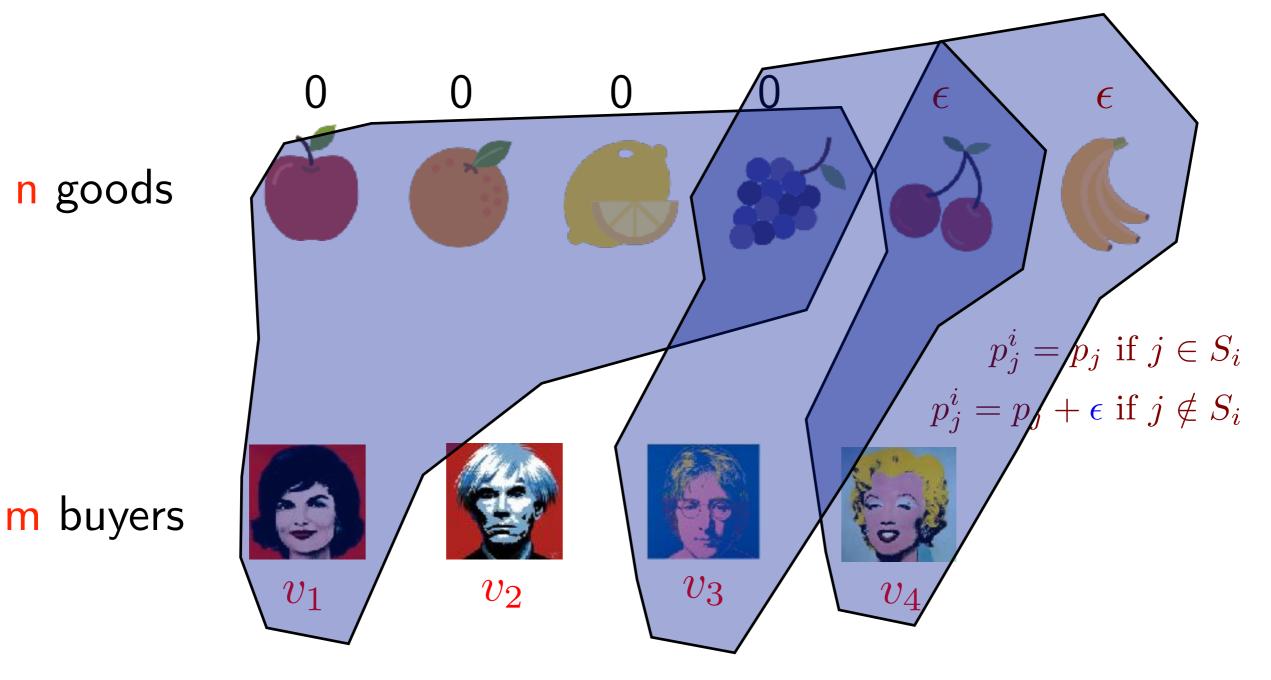
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .



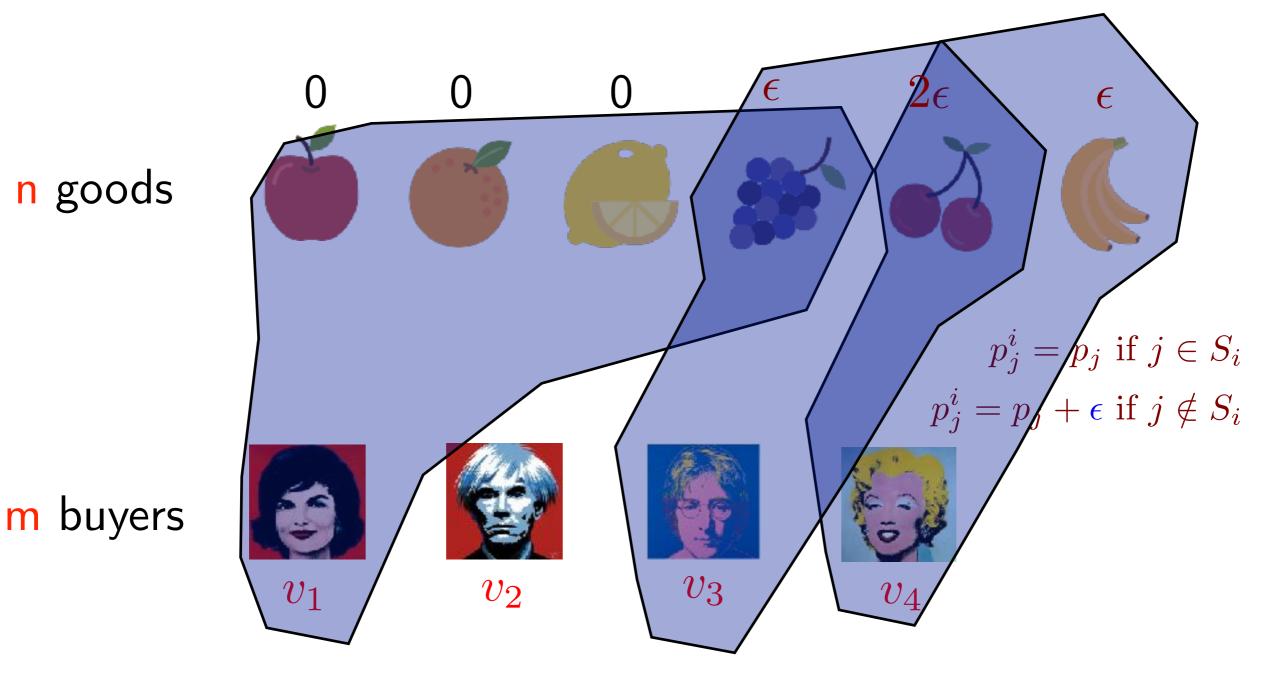
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .



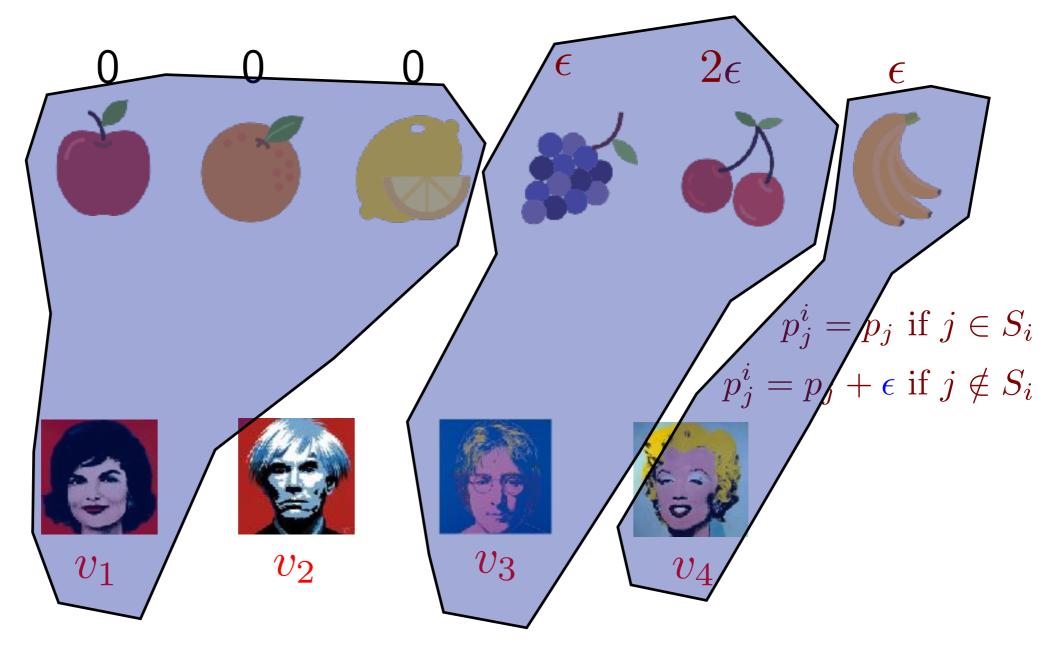
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .



- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .

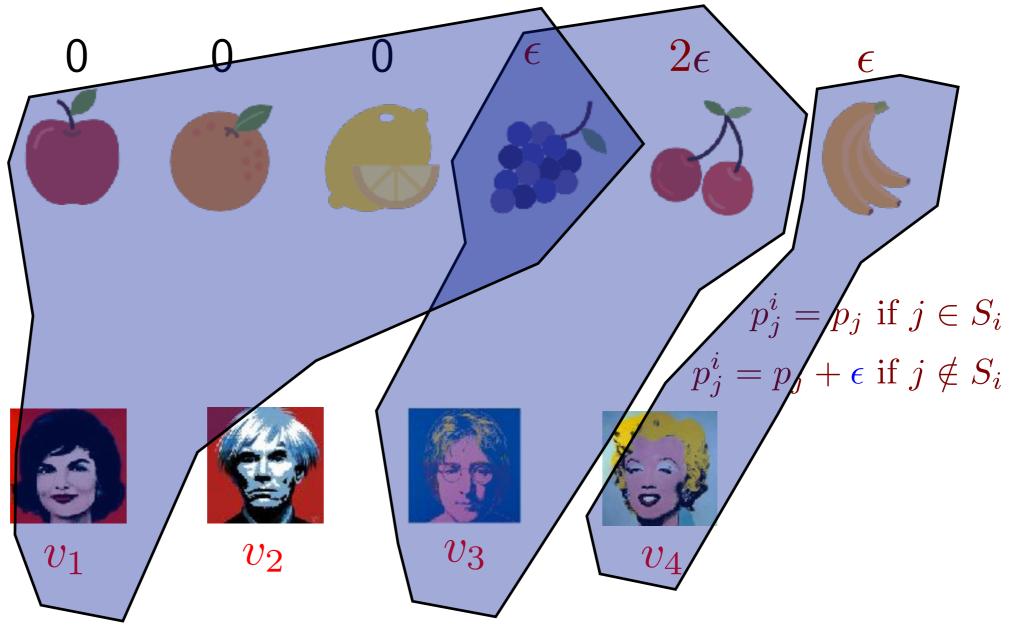


- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .



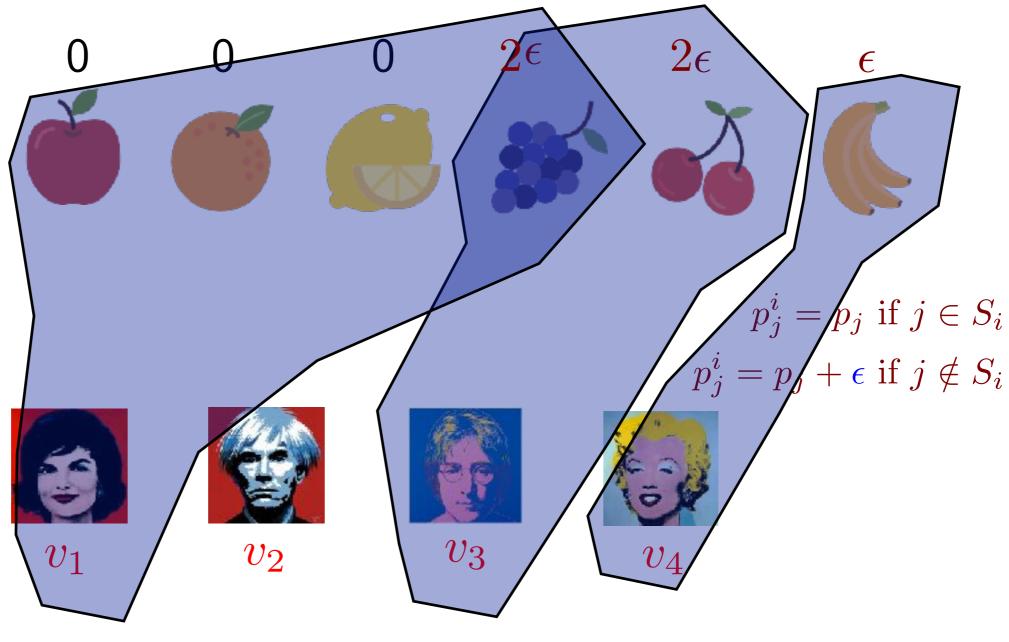
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .

n goods



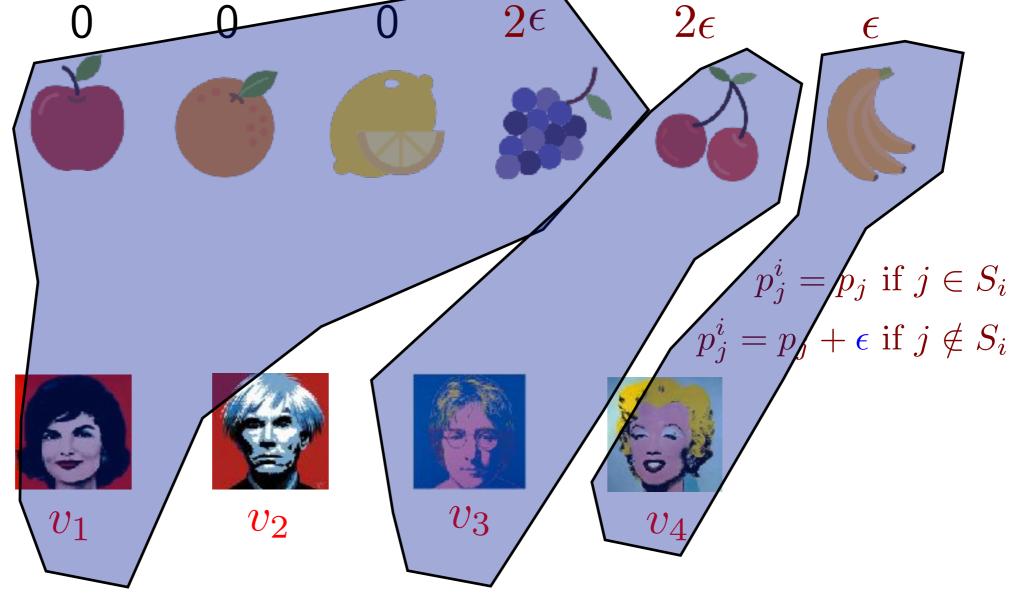
- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .

n goods



- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .

n goods



- Initialize $S_1 = [n], \ S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ .

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i; p^i)$

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i;p)$ in the limit $\epsilon o 0$

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i;p)$ in the limit $\ \epsilon o 0$
- What else ?

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i;p)$ in the limit $\ \epsilon o 0$
- What else ?
- The only condition left is that $\bigcup_i S_i = [n]$
- For that we need: $S_i \subseteq X_i \in D(v_i; p^i)$

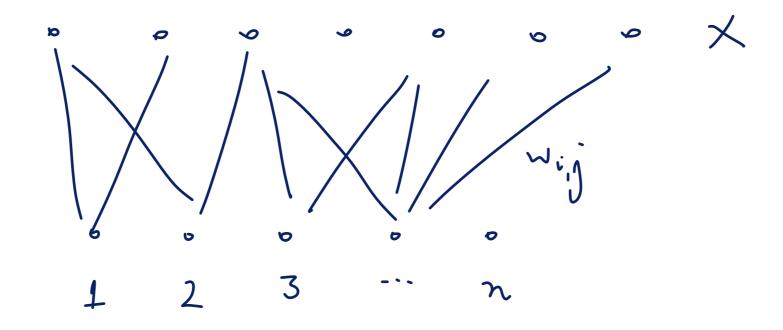
- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i;p)$ in the limit $\ \epsilon o 0$
- What else ?
- The only condition left is that $\bigcup_i S_i = [n]$
- For that we need: $S_i \subseteq X_i \in D(v_i; p^i)$
- Definition: A valuation satisfied gross substitutes if for all prices $p \leq p'$ and $S \in D(v;p)$ there is $X \in D(v;p')$ s.t. $S \cap \{i; p_i = p'_i\} \subseteq X$

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i;p)$ in the limit $\epsilon o 0$
- What else ?
- The only condition left is that $\bigcup_i S_i = [n]$
- For that we need: $S_i \subseteq X_i \in D(v_i; p^i)$
- Definition: A valuation satisfied gross substitutes if for all prices $p \leq p'$ and $S \in D(v;p)$ there is $X \in D(v;p')$ s.t. $S \cap \{i; p_i = p'_i\} \subseteq X$
- With the new definition, the algorithm always keeps a partition.

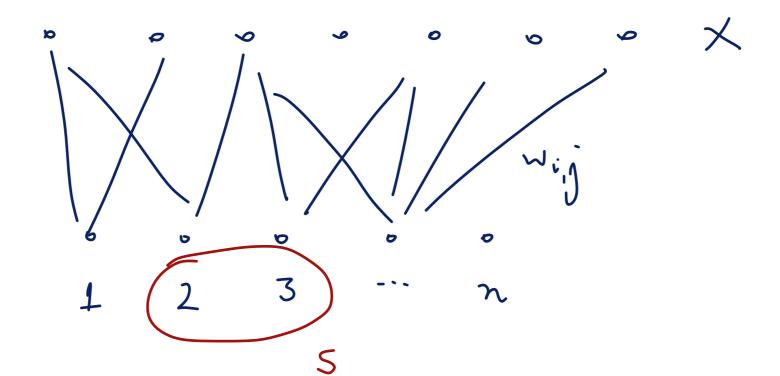
• Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max \operatorname{matching} \operatorname{from} S$

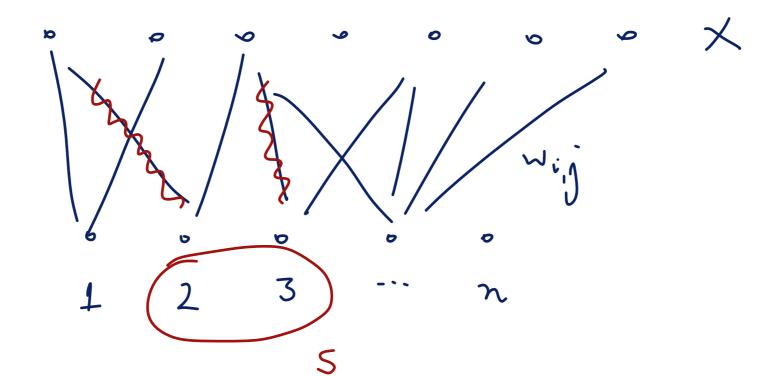
- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max \operatorname{matching} \operatorname{from} S$



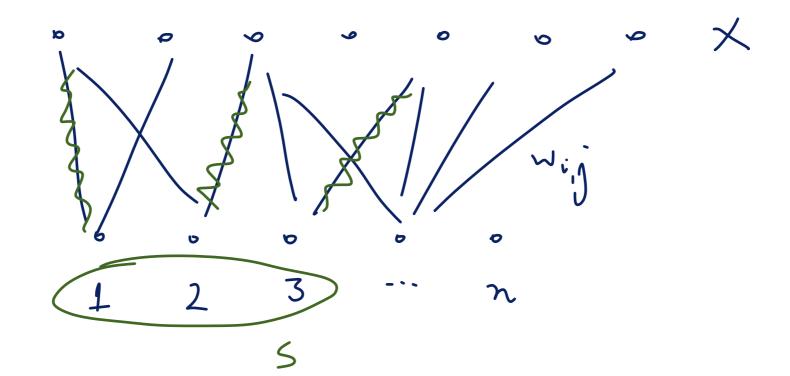
- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max$ matching from S



- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max$ matching from S

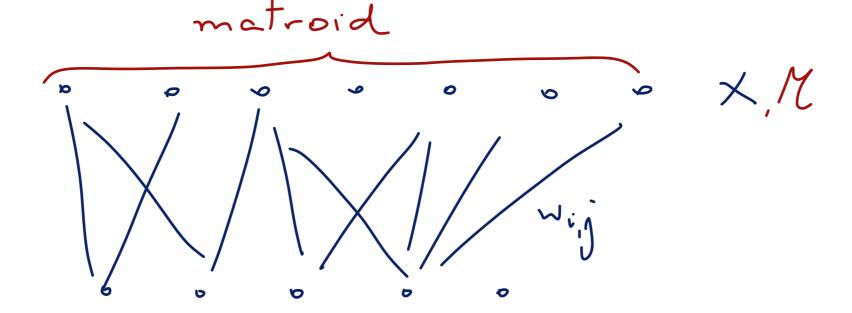


- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max$ matching from S

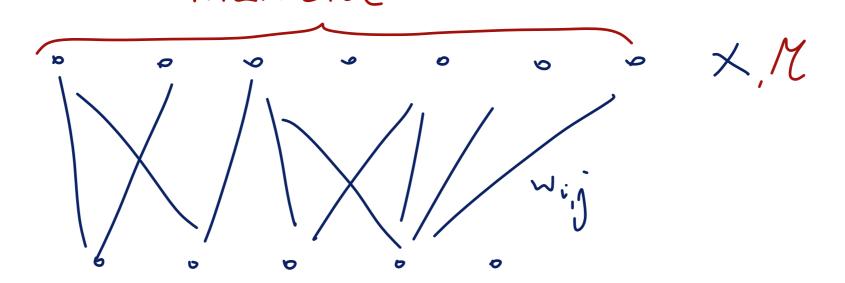


- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max$ matching from S
 - matroid-matching

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max$ matching from S
 - matroid-matching



- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S) = \max_{i \in S} v(i)$
 - matching valuations $v(S) = \max \operatorname{matching} \operatorname{from} S$
 - matroid-matching Open: GS ?= matroid-matching



- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
- Theorem [Gul-Stachetti]: If a class C of valuations contains all unit-demand valuations and Walrasian equilibrium always exists then $C\subseteq GS$

Valuated Matroids

• Given vectors $v_1, \ldots, v_m \in \mathbb{Q}^n$ define

 $\psi_p(v_1,\ldots,v_n) = n$ if $\det(v_1,\ldots,v_n) = p^{-n} \cdot a/b$

for p prime $a, b, p \in \mathbb{Z}$

• Question in algebra:

 $\min_{v_i \in V} \psi_p(v_1, \dots, v_n) \text{ s.t. } \det(v_1, \dots, v_n) \neq 0$

- Solution is a greedy algorithm: start with any nondegenerate set and go over each items and replace it by the one that minimizes $\psi_p(v_1, \ldots, v_n)$.
- [DW]: Grassmann-Plucker relations look like matroid cond

Valuated Matroids

• Definition: a function $v : {\binom{[n]}{k}} \to \mathbb{R}$ is a valuated matroid if the "Greedy is optimal".

Matroidal maps

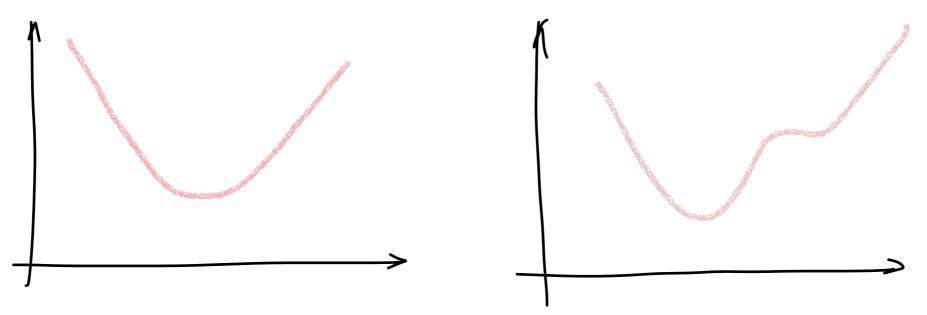
Definition: a function v : 2^[n] → ℝ is a matroidal map if for every p ∈ ℝⁿ a set in D(v; p) can be obtained by the greedy algorithm : S₀ = Ø and S_t = S_{t-1} ∪ {i_t} for i_t ∈ argmax_i v_p(i|S_t)

Matroidal maps

Definition: a function v : 2^[n] → ℝ is a matroidal map if for every p ∈ ℝⁿ a set in D(v; p) can be obtained by the greedy algorithm : S₀ = Ø and S_t = S_{t-1} ∪ {i_t} for i_t ∈ argmax_i v_p(i|S_t)

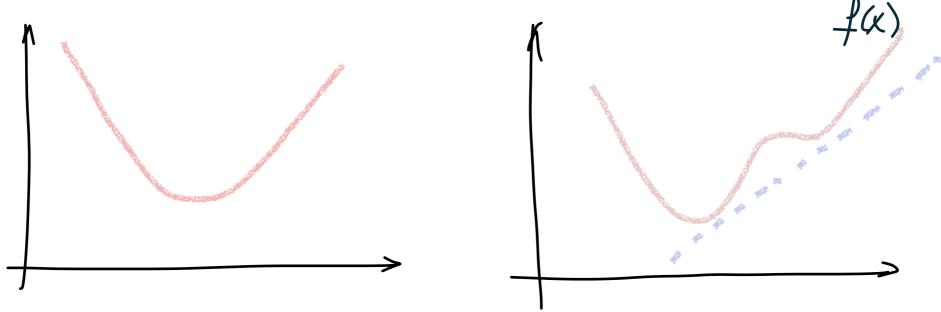
 Definition: a subset system M ⊆ 2^[n] is a matroid if for every p ∈ ℝⁿ the problem max p(S) can be solved by the greedy algorithm.

A function f: ℝⁿ → ℝ is convex if for all p ∈ ℝⁿ, a local minimum of f_p(x) = f(x) - ⟨p, x⟩ is a global minimum.



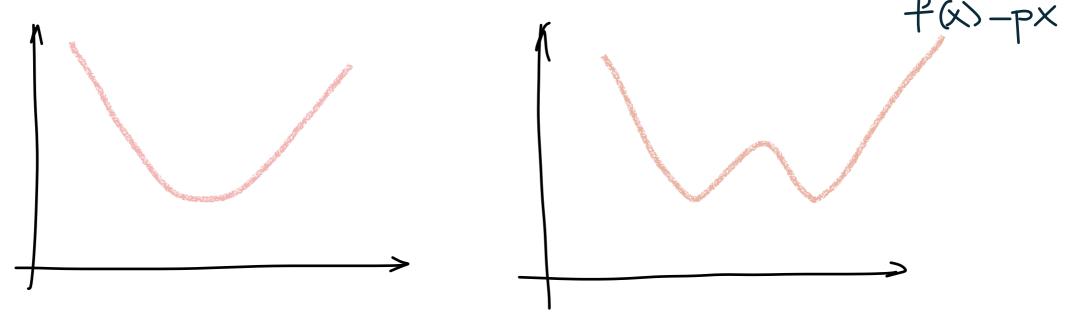
- Also, gradient descent converges for convex functions.
- We want to extend this notion to function in the hypercube: $v: 2^{[n]} \to \mathbb{R}$ (or lattice $v: \mathbb{Z}^{[n]} \to \mathbb{R}$ or other discrete sets such as the basis of a matroid)

A function f: ℝⁿ → ℝ is convex if for all p ∈ ℝⁿ, a local minimum of f_p(x) = f(x) - ⟨p, x⟩ is a global minimum.



- Also, gradient descent converges for convex functions.
- We want to extend this notion to function in the hypercube: v : 2^[n] → ℝ (or lattice v : Z^[n] → ℝ or other discrete sets such as the basis of a matroid)

A function f: ℝⁿ → ℝ is convex if for all p ∈ ℝⁿ, a local minimum of f_p(x) = f(x) - ⟨p, x⟩ is a global minimum.



- Also, gradient descent converges for convex functions.
- We want to extend this notion to function in the hypercube: $v: 2^{[n]} \to \mathbb{R}$ (or lattice $v: \mathbb{Z}^{[n]} \to \mathbb{R}$ or other discrete sets such as the basis of a matroid)

• A function $v: 2^{[n]} \to \mathbb{R}$ is discrete concave if for all $p \in \mathbb{R}^n$ all local minima of v_p are global minima. I.e.

$$v_p(S) \ge v_p(S \cup i), \forall i \notin S$$
$$v_p(S) \ge v_p(S \setminus j), \forall j \in S$$
$$v_p(S) \ge v_p(S \cup i \setminus j), \forall i \notin S, j \in S$$

then $v_p(S) \ge v_p(T), \forall T \subseteq [n]$. In particular local search always converges.

• [Murota '96] M-concave (generalize valuated matroids) [Murota-Shioura '99] M^{\natural} -concave functions

Equivalence

 [Fujishige-Yang] A function v : 2^[n] → ℝ is gross substitutes iff it is a matroidal map iff it is discrete concave.

[Kelso-Crawford '82] necessary /"sufficient" condition for price adjustment to converge gross substitutes

[Murota-Shioura '99] generalize convexity to discrete domains

M-discrete concave

[Dress-Wenzel '91] generalize Grassmann-Plucker relations valuated matroids

matroidal maps

Equivalence

 [Fujishige-Yang] A function v : 2^[n] → ℝ is gross substitutes iff it is a matroidal map iff it is discrete concave.

[Kelso-Crawford '82]
necessary / "sufficient"
condition for price
adjustment to converge[Murota-Shioura '99]
generalize convexity
to discrete domains[Dress-Wenzel '91]
generalize
Grassmann-Plucker
relationsM-discrete concavevaluated matroids
matroidal maps

• In particular $S \in D(v; p)$ in poly-time.

Equivalence

[Fujishige-Yang] A function v : 2^[n] → ℝ is gross
 substitutes iff it is a matroidal map iff it is discrete
 concave.

[Kelso-Crawford '82]
necessary / "sufficient"
condition for price
adjustment to converge[Murota-Shioura '99]
generalize convexity
to discrete domains[Dress-Wenzel '91]
generalize
Grassmann-Plucker
relationsM-discrete concaveValuated matroids
matroidal maps

- In particular $S \in D(v; p)$ in poly-time.
- Proof through discrete differential equations

Discrete Differential Equations

• Given a function $v: 2^{[n]} \to \mathbb{R}$ we define the discrete derivative with respect to $i \in [n]$ as the function $\partial_i v: 2^{[n]\setminus i} \to \mathbb{R}$ which is given by:

 $\partial_i v(S) = v(S \cup i) - v(S)$

(another name for the marginal)

Discrete Differential Equations

• Given a function $v: 2^{[n]} \to \mathbb{R}$ we define the discrete derivative with respect to $i \in [n]$ as the function $\partial_i v: 2^{[n]\setminus i} \to \mathbb{R}$ which is given by:

 $\partial_i v(S) = v(S \cup i) - v(S)$

(another name for the marginal)

• If we apply it twice we get:

 $\partial_{ij}v(S) := \partial_j \partial_i v(S) = v(S \cup ij) - v(S \cup i) - v(S \cup j) + v(S)$

• Submodularity: $\partial_{ij}v(S) \leq 0$

Discrete Differential Equations

• [Reijnierse, Gellekom, Potters] A function $v: 2^{[n]} \to \mathbb{R}$ is in gross substitutes iff it satisfies:

 $\partial_{ij}v(S) \le \max(\partial_{ik}v(S), \partial_{kj}v(S)) \le 0$

condition on the discrete Hessian.

• Idea: A function is in GS iff there is not price such that: $D(v;p) = \{S,S \cup ij\} \text{ or } D(v;p) = \{S \cup k,S \cup ij\}$

If v is not submodular, we can construct a price of the first type. If $\partial_{ij}v(S) > \max(\partial_{ik}v(S), \partial_{kj}v(S))$ then we can find a certificate of the second type.

Algorithmic Problems

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \to \mathbb{R}$ find a partition S_1, \ldots, S_m of [n] maximizing $\sum_i v_i(S_i)$
- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.
- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \operatorname{argmax}_S v_i(S) - p(S)$

Algorithmic Problems

- Techniques:
 - Tatonnement
 - Linear Programming
 - Gradient Descent
 - Cutting Plane Methods
 - Combinatorial Algorithms

• [Nisan-Segal] Formulate this problem as an LP:

```
\max \sum_{i} v_i(S) x_{iS}\sum_{S} x_{iS} = 1, \forall i \in [m]\sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n]x_{iS} \in \{0, 1\}
```

• [Nisan-Segal] Formulate this problem as an LP:

```
\max \sum_{i} v_i(S) x_{iS}\sum_{S} x_{iS} = 1, \forall i \in [m]\sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n]x_{iS} \in [0, 1]
```

• [Nisan-Segal] Formulate this problem as an LP:

```
\max \sum_{i} v_{i}(S) x_{iS}\sum_{S} x_{iS} = 1, \forall i \in [m]\sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n]x_{iS} \in [0, 1]primal
```

$$\min \sum_{i} u_{i} + \sum_{j} p_{j}$$
$$u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S$$
$$p_{j} \ge 0, u_{i} \ge 0$$

dual

• [Nisan-Segal] Formulate this problem as an LP:

$$\begin{array}{l} \max \sum_{i} v_{i}(S) x_{iS} \\ \sum_{S} x_{iS} = 1, \forall i \in [m] \\ \sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n] \\ x_{iS} \in [0, 1] \end{array} \begin{array}{l} \min \sum_{i} u_{i} + \sum_{j} p_{j} \\ u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S \\ p_{j} \ge 0, u_{i} \ge 0 \\ \end{array} \\ \begin{array}{l} p_{j} \ge 0, u_{i} \ge 0 \\ \end{array} \end{array}$$

- For GS, the IP is integral: $W_{\rm IP} \leq W_{\rm LP} = W_{\rm D-LP}$
- Consider a Walrasian equilibrium and p the Walrasian prices and u the agent utilities. Then it is a solution to the dual, so: $W_{\rm D-LP} \leq W_{\rm eq} = W_{\rm IP}$

• [Nisan-Segal] Formulate this problem as an LP:

```
\max \sum_{i} v_{i}(S) x_{iS}\sum_{S} x_{iS} = 1, \forall i \in [m]\sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n]x_{iS} \in [0, 1]primal
```

$$\min \sum_{i} u_{i} + \sum_{j} p_{j}$$
$$u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S$$
$$p_{j} \ge 0, u_{i} \ge 0$$

dual

• [Nisan-Segal] Formulate this problem as an LP:

$$\begin{array}{l} \max \sum_{i} v_{i}(S) x_{iS} \\ \sum_{S} x_{iS} = 1, \forall i \in [m] \\ \sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n] \\ x_{iS} \in [0, 1] \end{array} \begin{array}{l} \min \sum_{i} u_{i} + \sum_{j} p_{j} \\ u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S \\ p_{j} \ge 0, u_{i} \ge 0 \\ \end{array}$$

• In general, Walrasian equilibrium exists iff LP is integral.

• [Nisan-Segal] Formulate this problem as an LP:

$$\begin{array}{l} \max \sum_{i} v_{i}(S) x_{iS} \\ \sum_{S} x_{iS} = 1, \forall i \in [m] \\ \sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n] \\ x_{iS} \in [0, 1] \end{array} \begin{array}{l} \min \sum_{i} u_{i} + \sum_{j} p_{j} \\ u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S \\ p_{j} \ge 0, u_{i} \ge 0 \\ \end{array}$$

- In general, Walrasian equilibrium exists iff LP is integral.
- Separation oracle for the dual: $u_i \ge \max_S v_i(S) p(S)$ is the demand oracle problem.

• [Nisan-Segal] Formulate this problem as an LP:

```
\max \sum_{i} v_{i}(S) x_{iS}\sum_{S} x_{iS} = 1, \forall i \in [m]\sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n]x_{iS} \in [0, 1]primal
```

$$\min \sum_{i} u_{i} + \sum_{j} p_{j}$$
$$u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S$$
$$p_{j} \ge 0, u_{i} \ge 0$$

dual

• [Nisan-Segal] Formulate this problem as an LP:

 $\begin{array}{l} \max \sum_{i} v_{i}(S) x_{iS} \\ \sum_{S} x_{iS} = 1, \forall i \in [m] \\ \sum_{i} \sum_{S \ni j} x_{iS} = 1, \forall j \in [n] \\ x_{iS} \in [0, 1] \end{array} \begin{array}{l} \min \sum_{i} u_{i} + \sum_{j} p_{j} \\ u_{i} \ge v_{i}(S) - \sum_{j \in S} p_{j} \forall i, S \\ p_{j} \ge 0, u_{i} \ge 0 \\ \end{array}$

- Walrasian equilibrium exists + demand oracle in poly-time
 Welfare problem in poly-time
- [Roughgarden, Talgam-Cohen] Use complexity theory to show non-existence of equilibrium, e.g. budget additive.

Gradient Descent

• We can Lagrangify the dual constraints and obtain the following convex potential function:

$$\phi(p) = \sum_{i} \max_{S} [v_i(S) - p(S)] + \sum_{j} p_j$$

• Theorem: the set of Walrasian prices (when they exist) are the set of minimizers of ϕ .

 $\partial_j \phi(p) = 1 - \sum_i \mathbb{1}[j \in S_i]; S_i \in D(v_i; p)$

- Gradient descent: increase price of over-demanded items and decrease price of over-demanded items.
- Tatonnement: $p_j \leftarrow p_j \epsilon \cdot \operatorname{sgn} \partial_j \phi(p)$

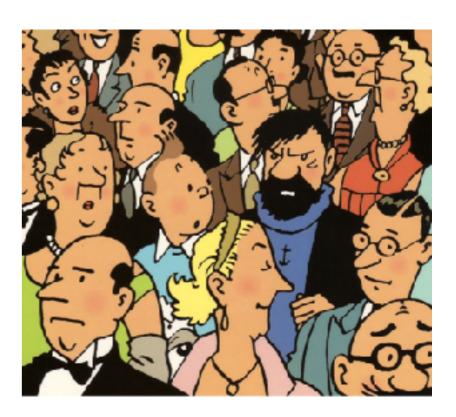
Comparing Methods

method

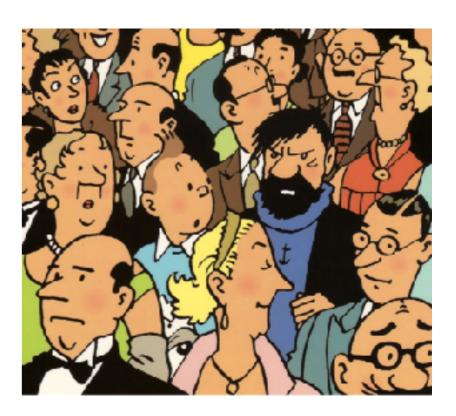
oracle

running-time

How to access the input

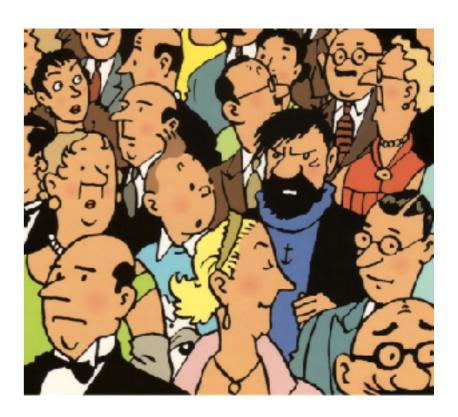


How to access the input



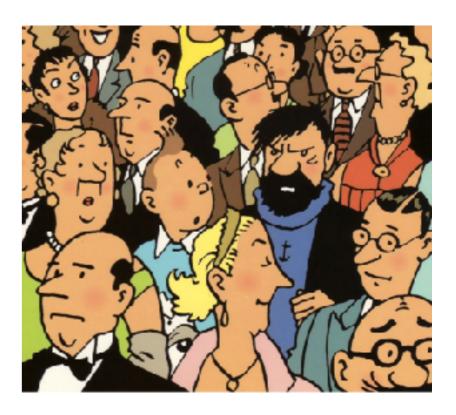
Value oracle: given i and S: query $v_i(S)$.

How to access the input



Value oracle: given i and S: query $v_i(S)$. Demand oracle: given i and p: query $S \in D(v_i, p)$

How to access the input



Value oracle: given i and S: query $v_i(S)$.

Demand oracle: given i and p:

Aggregate Demand: given p, query. query $S \in D(v_i, p)$ $\sum_i S_i; S_i \in D(v_i, p)$

method oracle running-time tatonnement/GD aggreg demand pseudo-poly

methodoraclerunning-timetatonnement/GDaggreg demandpseudo-polylinear programdemand/valueweakly-poly

methodoraclerunning-timetatonnement/GDaggreg demandpseudo-polylinear programdemand/valueweakly-polycutting planeaggreg demandweakly-poly

• [PL-Wong]: We can compute an exact equilibrium with $\tilde{O}(n)$ calls to an aggregate demand oracle.

methodoraclerunning-timetatonnement/GDaggreg demandpseudo-polylinear programdemand/valueweakly-polycutting planeaggreg demandweakly-poly

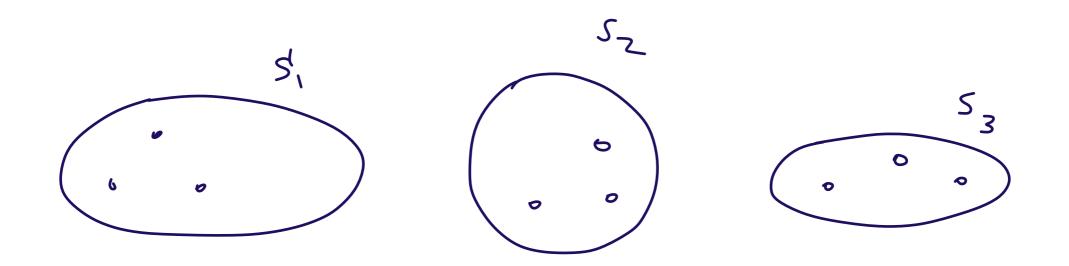
methodoraclerunning-timetatonnement/GDaggreg demandpseudo-polylinear programdemand/valueweakly-polycutting planeaggreg demandweakly-polycombinatorialvaluestrongly-poly

methodoraclerunning-timetatonnement/GDaggreg demandpseudo-polylinear programdemand/valueweakly-polycutting planeaggreg demandweakly-polycombinatorialvaluestrongly-poly

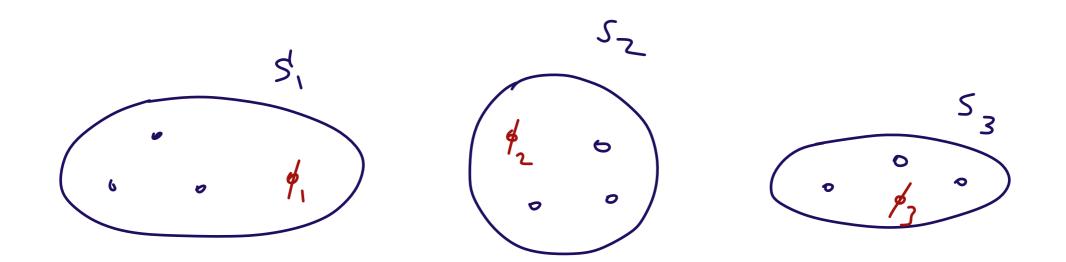
• [Murota]: We can compute an exact equilibrium for gross substitutes in $\tilde{O}((mn + n^3)T_V)$ time.

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \to \mathbb{R}$ find a partition S_1, \ldots, S_m of [n] maximizing $\sum_i v_i(S_i)$
- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.
- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \operatorname{argmax}_S v_i(S) - p(S)$

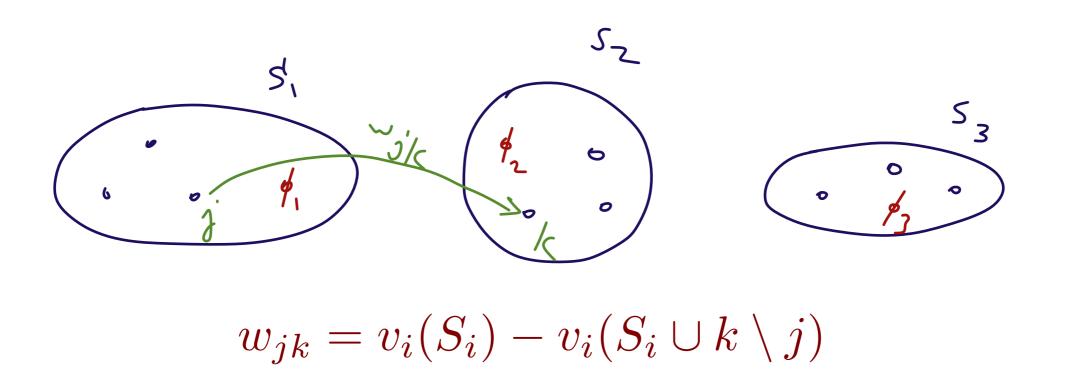
- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



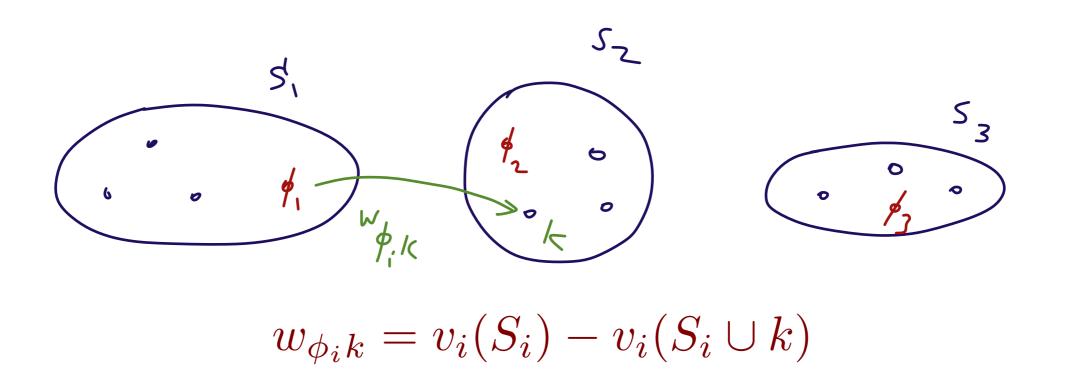
- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



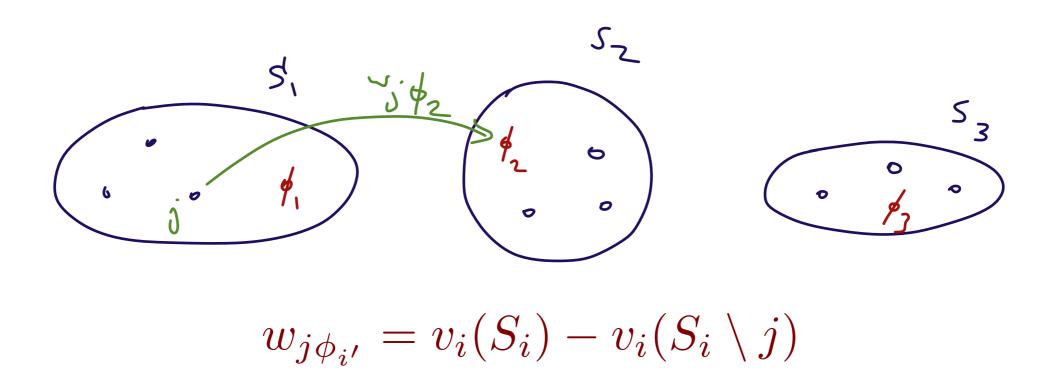
- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



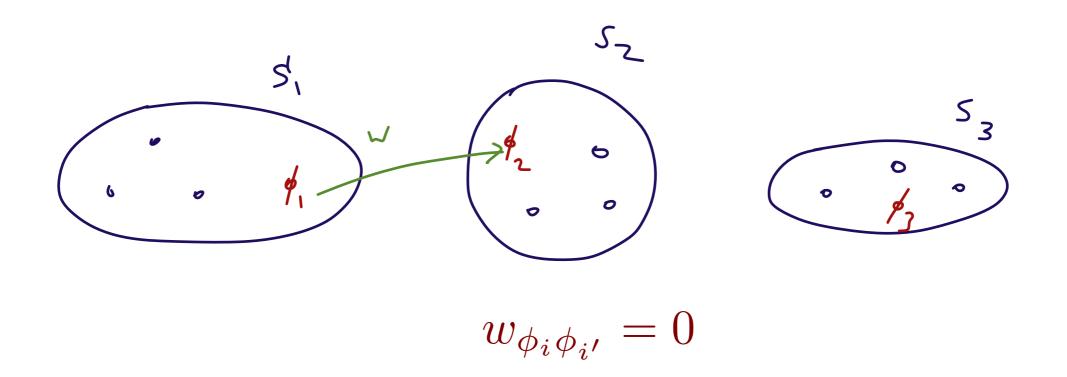
- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



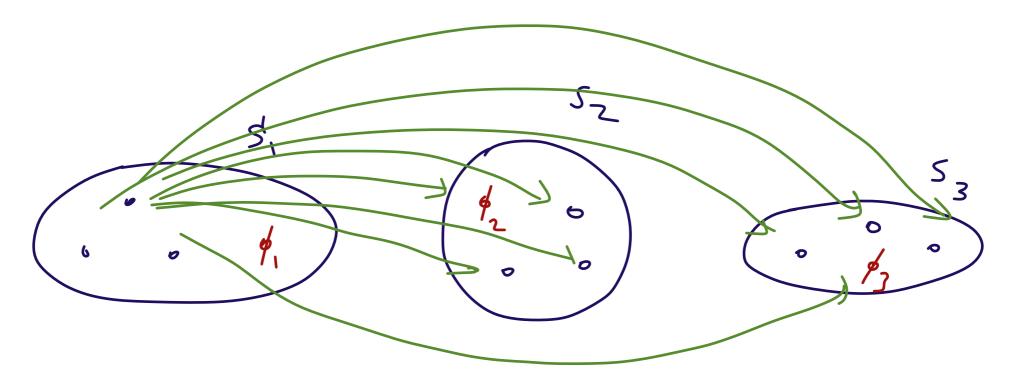
- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.

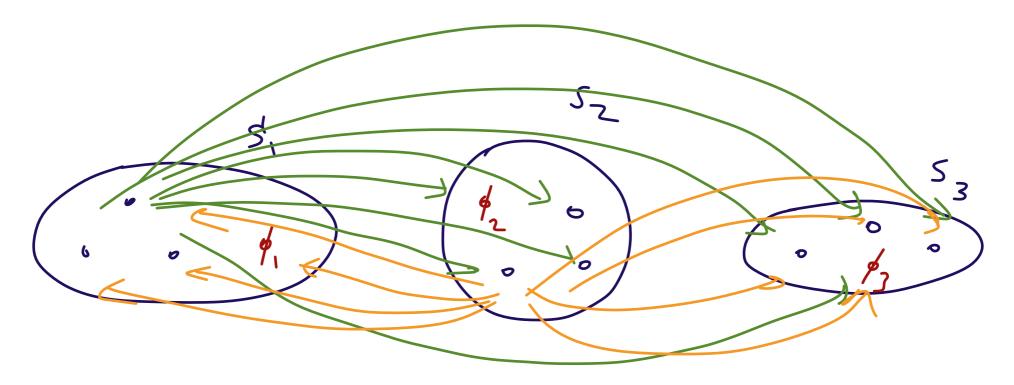


- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.

- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \operatorname{argmax}_S v_i(S) p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.



- Theorem: the allocation is optimal if the exchange graph has no negative cycle.
- Proof: if no negative cycles the distance is well defined. So let $p_j = -\operatorname{dist}(\phi, j)$ then:

 $\operatorname{dist}(\phi, k) \leq \operatorname{dist}(\phi, j) + w_{jk}$ $v_i(S_i) \geq v_i(S_i \cup k \setminus j) - p_k + p_j$

And since S_i is locally-opt then it is globally opt. Conversely: Walrasian prices are a dual certificate showing that no negative cycles exist.

- Theorem: the allocation is optimal if the exchange graph has no negative cycle.
- Proof: if no negative cycles the distance is well defined. So let $p_j = -\operatorname{dist}(\phi, j)$ then:

 $dist(\phi, k) \le dist(\phi, j) + w_{jk}$ $v_i(S_i) \ge v_i(S_i \cup k \setminus j) - p_k + p_j$

And since S_i is locally-opt then it is globally opt. Conversely: Walrasian prices are a dual certificate showing that no negative cycles exist.

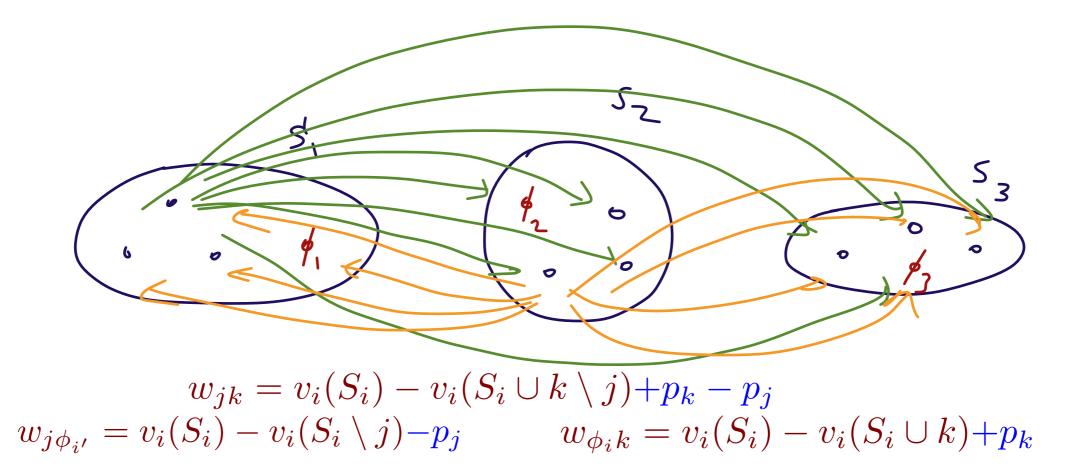
• Nice consequence: Walrasian prices form a lattice.

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \to \mathbb{R}$ find a partition S_1, \ldots, S_m of [n] maximizing $\sum_i v_i(S_i)$
- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.
- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \operatorname{argmax}_S v_i(S) - p(S)$

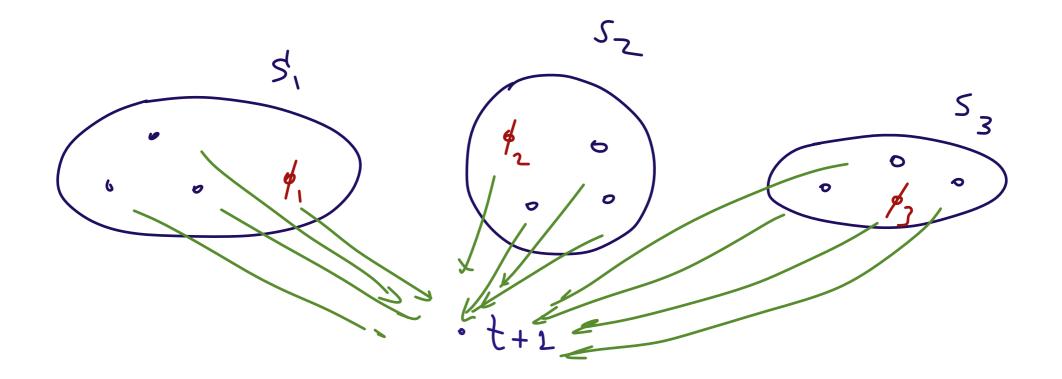
- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \to \mathbb{R}$ find a partition S_1, \ldots, S_m of [n] maximizing $\sum_i v_i(S_i)$
- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.
- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \operatorname{argmax}_S v_i(S) - p(S)$

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \to \mathbb{R}$ find a partition S_1, \ldots, S_m of [n] maximizing $\sum_i v_i(S_i)$
- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.
- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \operatorname{argmax}_S v_i(S) - p(S)$

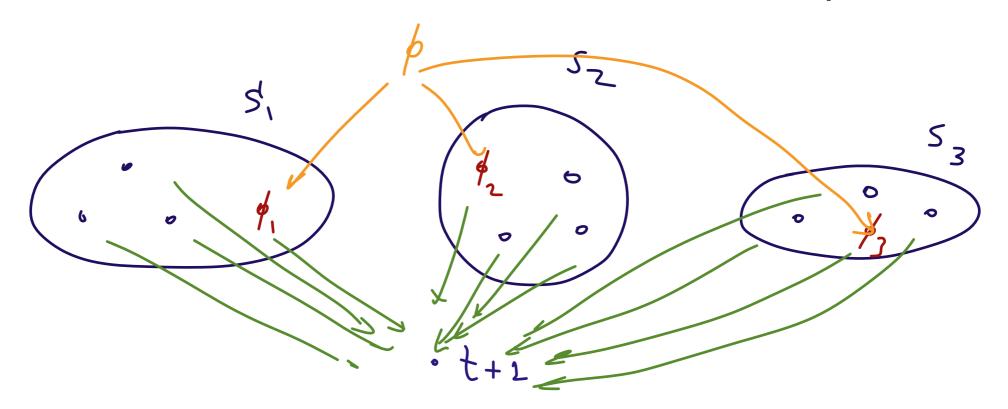
- For each t = 1..n we will solve problem W_t to find the optimal allocation of items $[t] = \{1..t\}$ to m buyers.
- Problem W_1 is easy.
- Assume now we solved W_t getting allocation S_1, \ldots, S_m and a certificate p = maximal Walrasian prices.



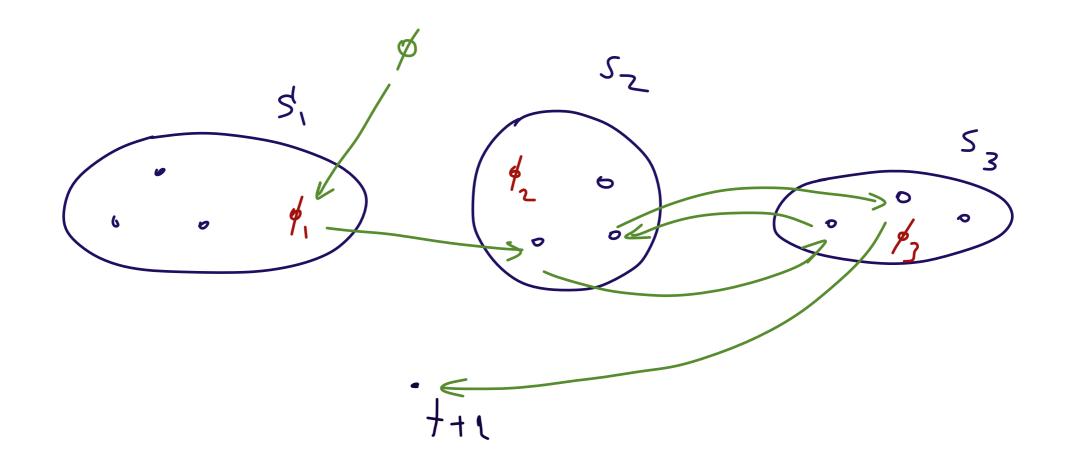
- For each t = 1..n we will solve problem W_t to find the optimal allocation of items $[t] = \{1..t\}$ to m buyers.
- Problem W_1 is easy.
- Assume now we solved W_t getting allocation S_1, \ldots, S_m and a certificate p = maximal Walrasian prices.



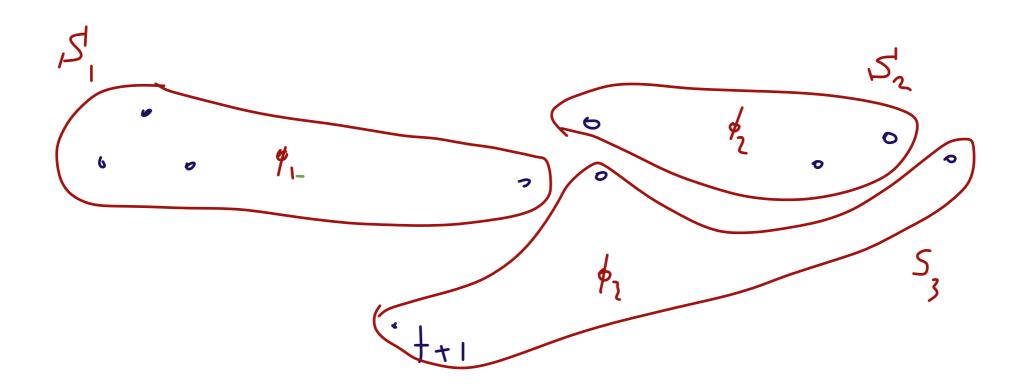
- For each t = 1..n we will solve problem W_t to find the optimal allocation of items $[t] = \{1..t\}$ to m buyers.
- Problem W_1 is easy.
- Assume now we solved W_t getting allocation S_1, \ldots, S_m and a certificate p = maximal Walrasian prices.



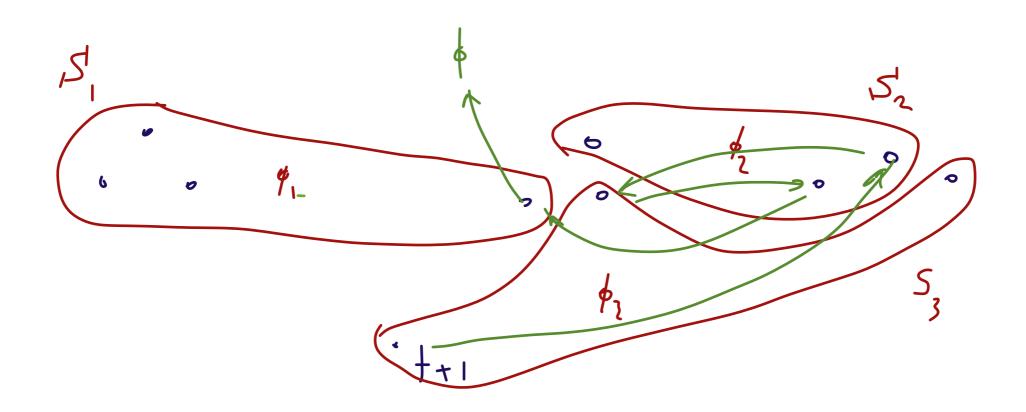
- Algorithm: compute shortest path from ϕ to t+1
- Update allocation by implementing path swaps



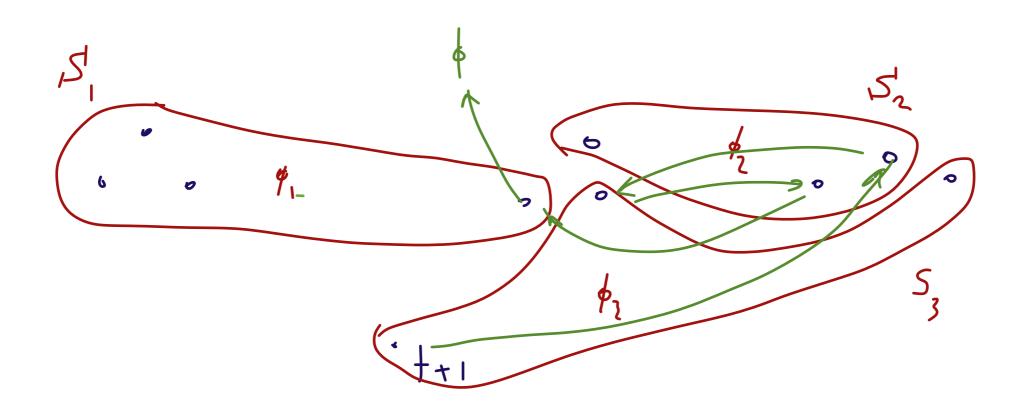
- Algorithm: compute shortest path from ϕ to t+1
- Update allocation by implementing path swaps



- Algorithm: compute shortest path from ϕ to t+1
- Update allocation by implementing path swaps



- Algorithm: compute shortest path from ϕ to t+1
- Update allocation by implementing path swaps



- Graph has $O(t^2 + mt)$ non-negative edges
- After **n** iterations of Dijkstra we get $\tilde{O}(n^3 + n^2m)$

- Proof that new allocation $ilde{S}_1 \dots ilde{S}_m$ is optimal
- Define the new prices $\ ilde{p}_j = -\operatorname{dist}(\phi,j)$
 - (1) New prices are also a certificate for $S_1 \dots S_m$
 - (2) $v_i(S_i) \tilde{p}(S_i) = v_i(\tilde{S}_i) \tilde{p}(\tilde{S}_i)$
 - Hence, $\tilde{S}_1 \dots \tilde{S}_m$ and \tilde{p} are Walrasian prices.

Closure properties

• If $v_1, v_2 \in GS$ we might not have $v_1 + v_2 \in GS$

Closure properties

- If $v_1, v_2 \in GS$ we might not have $v_1 + v_2 \in GS$
- Some preserving operations:
 - affine transformation $\tilde{v}(S) = v(S) + p_0 \sum_{i \in S} p_i$
 - endowment $\tilde{v}(S) = v(S|X)$
 - convolution $v_1 * v_2(S) = \max_{T \subseteq S} v_1(T) + v_2(S \setminus T)$
 - strong-quotient-sum
 - tree-concordant-sum

Closure properties

- If $v_1, v_2 \in \mathrm{GS}$ we might not have $v_1 + v_2 \in \mathrm{GS}$
- Some preserving operations:
 - affine transformation $\tilde{v}(S) = v(S) + p_0 \sum_{i \in S} p_i$
 - endowment $\tilde{v}(S) = v(S|X)$
 - convolution $v_1 * v_2(S) = \max_{T \subseteq S} v_1(T) + v_2(S \setminus T)$
 - strong-quotient-sum
 - tree-concordant-sum
- Open question: can we construct all gross substitutes from matroid rank functions and those operations ?
 - Some progress: See talk by Eric Balkanski on Thu

End of Part I