Gross Substitutes
Tutonal

Part |: Combinatorial structure and algorithms
(Renato Paes Leme, Google)

Part |l: Economics and the boundaries of substitutability
(Inbal Talgam-Cohen, Hebrew University)

Three seemingly-independent problems

Three seemingly-independent problems

- O N gy
......
L 4 ~

’ N\

'," [Kelso-Crawford '82] ™,

necessary /“sufficient”

---—

condition for price

"t mmm="

+ adjustment to converge ,

A)
4

‘s, gross substitutes .
. 4

2 4

~ -
.. —‘

Three seemingly-independent problems

L g N l ~

'é s\ '¢' ’ ~s\
o N " [Dress-Wenzel '91] +,

. |Kelso-Crawford '82] ' . '
N Psufficient” . K generalize .
r necessary /“sufficien :

: _ y _ \ v Grassmann-Plucker &
' condition for price : ' . :
. : ' relations :
1 1
+ adjustment to converge , Y L
4 . ’
" K ., valuated matroids
‘.

24

s . 2 .
. gross substitutes . *+. matroidal maps .’

L4
<
L 4 o .

~
~~~~~~~~~
------------



Three seemingly-independent problems

_---..
~ - ~
- L " ~
L 4 l
L 4 §~ o §~

) . "'¢ | ~5\
" [Dress-Wenzel '91] +,

A}
4

'," [Kelso-Crawford '82] ™,

) )

k . ;! generalize .
r necessary /“sufficient” - \
: . _ ; + Grassmann-Plucker
' condition for price : ' . :
v ' ' relations '
| |
+ adjustment to converge , Y L
' 4 . 4
% ‘ , valuated matroids
‘.. gross substitutes ,* ' S’
+ 5 R *. matroidal maps ,.*

~ A ~ .
~§ " ~~ "

~ ~
.-----— .----"

24

;. [Murota-Shioura "99] ~,

A}

generalize convexity
to discrete domains

1
I
[ |
1
1
|

..--’

L}
| )

N ’

. M-discrete concave

. !
A
L
~ "
~
..-__--"



Three seemingly-independent problems

--------
~~~~~~~~~~~~
' d ~ L 4 ~

'é s\ '¢ ’ ~s\
o N " [Dress-Wenzel '91] +,

/' [Kelso-Crawford '82] ' ! '
/ Psufficient” Y K generalize .
r necessary /“sufficien -

: _ y _ \ v Grassmann-Plucker &
' condition for price : ' . :
. : ' relations :
1 1
+ adjustment to converge , Y L
4 . ’
" S A ., valuated matroids
"\, gross substitutes .’ Discrete Convex . matroidal maps .~
et ’ Analysis IO ’

Y4

A}

;. [Murota-Shioura "99] ~,

. .
3 generalize convexity
' to discrete domains
1 "
\‘ ?

. ’

“. M-discrete concave
. !
g .

~~~~~
-------



Some notation to start

Discrete sets of goods: [] = {1,...,n}

Valuation function v : 2" = R

Given prices p € R"™ define v,(S) = v(S) — p(5)
Demand correspondence D(v;p) = argmaxg v, (S5)
Demand oracle Op(v,p) € D(v;p)

Value oracle Oy (v,S5) = v(S5)

Marginals v(S|T) =v(SUT) — v(T)



Walrasian equilibrium

m buyers




Walrasian equilibrium

m buyers

U1

e Valuations v; : 2% — R



Walrasian equilibrium

P1 P2 P3 Pa P5 D6

n goods ’ﬂ

¢

m buyers

U1

e Valuations v; : 2% — R



Walrasian equilibrium

P1 P2 P3 P4 P5 D6

n goods 'ﬂ

¢

m buyers

U1

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmaxgc n|vi(S) — D, o5 Pil



Walrasian equilibrium

P1 P2 pPs3
n goods 6 .
Sl < D(Ulap

P4 P5 D6

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmaxgc n|vi(S) — D, o5 Pil



Walrasian equilibrium

P1 P2

n goods

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmaxgc[vi(S) — >, cq Pil



Walrasian equilibrium

P1 P2 P3 P4 P5 D6

n goods

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmaxgc[vi(S) — >, cq Pil



Walrasian equilibrium

P1 P2 P3 P4 P5 D6

n goods

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmaxgc[vi(S) — >, cq Pil



Walrasian equilibrium

e Market equilibrium: prices p € R"s.t. S; € D(v;, p)
i.e. each good is demanded by exactly one buyer.

First Welfare Theorem: in equilibrium the welfare

Zi v; (S;) is maximized.

(proof: LP duality)

When do equilibria exist ?
How do markets converge to equilibrium prices 7

How to compute a Walrasian equilibrium 7



Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

2€

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends 5, € D(Uz';pi)



Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends S; € D(v;;p) in the limit ¢ — 0



Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends S; € D(v;;p) in the limit ¢ — 0

e What else ?



Walrasian tatonnement

This process always ends, otherwise prices go to infinity.

When it ends S; € D(v;;p) in the limit € — 0
What else ?

The only condition left is that U;S; = [n,

For that we need: S; C X; € D(v;;p')



Walrasian tatonnement

This process always ends, otherwise prices go to infinity.

When it ends S; € D(v;;p) in the limit € — 0
What else 7

The only condition left is that U;S; = [n,

For that we need: S; C X; € D(v;;p")

Definition: A valuation satisfied gross substitutes if for
all prices p <p'and S € D(v;p) there is X € D(v;p’)
s.t. SN{i;pi=p;} CX



Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends S; € D(v;;p) in the limit ¢ — 0
e What else 7

e The only condition left is that U;S; = [n]

e For that we need: S; C X; € D(Uq;;pi)

e Definition: A valuation satisfied gross substitutes if for
all prices p <p'and S € D(v;p) there is X € D(v;p’)
s.t. SN{i;pi=p;} CX

o With the new definition, the algorithm always keeps a partition.



Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.



Walrasian equilibrium

Theorem [Kelso-Crawford|: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

o additive functions v(S) = ) ..o v(¢)

e unit-demand v(S) = max;cg v(?)

e matching valuations v(.5) = max matching from S



Walrasian equilibrium

Theorem [Kelso-Crawford|: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

o additive functions v(S) = ) ..o v(¢)

e unit-demand v(S) = max;cg v(?)

e matching valuations v(.5) = max matching from S

N



Walrasian equilibrium

Theorem [Kelso-Crawford|: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

o additive functions v(S) = ) ..o v(¢)

e unit-demand v(S) = max;cg v(?)

e matching valuations v(.5) = max matching from S

W

S



Walrasian equilibrium

Theorem [Kelso-Crawford|: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

o additive functions v(S) = ) ..o v(¢)

e unit-demand v(S) = max;cg v(?)

e matching valuations v(.5) = max matching from S

Wz

S



Walrasian equilibrium

Theorem [Kelso-Crawford|: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

o additive functions v(S) = ) ..o v(¢)

e unit-demand v(S) = max;cg v(?)

e matching valuations v(.5) = max matching from S

: e o v e o e K
Wl
(z? .




Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

e Some examples of GS:
o additive functions v(S) = ) ..o v(¢)
e unit-demand v(S) = max;cg v(?)
e matching valuations v(.5) = max matching from S
e matroid-matching



Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

additive functions v(S) = > .. v(¢)
unit-demand v(S) = max;cg v(7)
matching valuations v(S) = max matching from S

matroid-matching
‘Yv\O..-J_rO\ 0&_

2




Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

additive functions v(S) = > .. v(¢)
unit-demand v(S) = max;cg v(7)
matching valuations v(S) = max matching from S

matroid-matching Open: GS ?= matroid-matching
‘YV\O-.-J_WD\.OK_

N\

- o = XA/

Dss

o



Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

e Theorem [Gul-Stachetti]: If a class C of valuations
contains all unit-demand valuations and Walrasian
equilibrium always exists then C C GS



Valuated Matroids

Given vectors V1, ..., U, € Q"define

Up(V1,...,0) =nif det(vy,...,v,) =p " -a/b
for pprime a,b,p € Z
Question in algebra:

min ¥, (v1,...,v,) s.t. det(vy,...,v,) #0

v; €V
Solution is a greedy algorithm: start with any non-
degenerate set and go over each items and replace it by

the one that minimizes ¥, (v1,...,v,).

[DW]: Grassmann-Plucker relations look like matroid cond



Valuated Matroids

e Definition: a function v : ([Z]) — R is a valuated

matroid if the "Greedy is optimal”.



Matroidal maps

e Definition: a function v : 2"/ —s R is a matroidal map if
for every p € R"™ a set in D(wv;p) can be obtained by

the greedy algorithm : Sy = ) and
St — St—l U {Zt} for it - argimax., vp(i\St)



Matroidal maps

e Definition: a function v : 2"/ —s R is a matroidal map if
for every p € R"™ a set in D(wv;p) can be obtained by

the greedy algorithm : Sy = ) and
St — St—l U {Zt} for it - argimax., vp(i\St)

o Definition: a subset system M C 2" is a matroid if

for every p € R" the problem max p(S) can be solved

by the greedy algorithm.



Discrete Concavity

e A function f: R"™ — R is convex if for all p € R", a
local minimum of fp(7) = f(z) — (P, *) is a global

minimum.

f f

> >

e Also, gradient descent converges for convex functions.
e We want to extend this notion to function in the
hypercube: v : 21"l — R (or lattice v : ZI" — R

or other discrete sets such as the basis of a matroid)



Discrete Concavity

e A function f: R"™ — R is convex if for all p € R", a
local minimum of fp(7) = f(z) — (P, *) is a global

minimum.

N i 6

> >

e Also, gradient descent converges for convex functions.
e We want to extend this notion to function in the
hypercube: v : 21"l — R (or lattice v : ZI" — R

or other discrete sets such as the basis of a matroid)



Discrete Concavity

e A function f: R"™ — R is convex if for all p € R", a
local minimum of fp(7) = f(z) — (P, *) is a global

minimum.

> >

e Also, gradient descent converges for convex functions.
e We want to extend this notion to function in the
hypercube: v : 21"l — R (or lattice v : ZI" — R

or other discrete sets such as the basis of a matroid)



Discrete Concavity

o A function v : 2"l 5 R is discrete concave if for all

p € R"all local minima of ¢, are global minima. l.e.
p

vp(S) > v,(SU), Ve & S
up(S) = vp(S\j),Vj€S
vp(S) > v, (SUIN\j),Vig S jes

then v,(S) > v,(T"),VT C [n]. In particular local

search always converges.

e [Murota '96] M-concave (generalize valuated matroids)

Murota-Shioura '99] M?%-concave functions



+" [Kelso-Crawford "82] ‘\‘ " [Murota-Shioura '99] ‘\‘ .

Equivalence

e [Fujishige-Yang| A function v : 2"l 5 R is gross
substitutes iff it is a matroidal map iff it is discrete

concave.

------------------
~~~~~~~~~~~~~

. . R N R RSREN
: " [Dress-Wenzel '91]
A 3

generalize \

’

’ b . "oy . . | |
¢ necessary /“sufficient + . generalize convexity ! cicsmann-Plucker
' dition for price ' : ' ' '
' condil P + 1 to discrete domains i relations :
+ adjustment to converge ; Y ;
' . ' . '
% Ry \‘ M-discrete concave [‘\‘ valuated matroids RS
4 4

‘s, gross substitutes .’ . . . : .
S R . L *..matroidal maps -

~ ~
~~~~~~~~~~~~~~~
------------------



Equivalence

e [Fujishige-Yang| A function v : 2"l 5 R is gross
substitutes iff it is a matroidal map iff it is discrete

concave.

------------------
—————————————

, . . \ ! s\
"& | .. ',' *. 'i' [DreSS—Wenze| ,91] .
+" [Kelso-Crawford "82] % [Murota-Shioura '99] ‘

’

generalize

k 0 re e
] necesz;-ar-y /:Uff'cfe”t '-: ; gene.ralize convex.ity '-: ! Grassmann-Plucker
',‘ .CO” 'tion for price . ',‘ to discrete domains ',‘ relations
» adjustment to converge Y SN |
% RS « M-discrete concave , . valuated matroids
‘\\gross substitutesx/ ‘\\ x/ \*\matroida| maps,/'

~ ~
~~~~~~~~~~~~~~~

o In particular S € D(v;p) in poly-time.

| |

..--—

’

4

- -y
-
~

Equivalence

e [Fujishige-Yang| A function v : 2"l 5 R is gross
substitutes iff it is a matroidal map iff it is discrete

concave.

~~~~~~~~~~~~~

, . . \ ! s\
"& | .. ',' *. 'i' [DreSS—Wenze| ,91] .
+" [Kelso-Crawford "82] % [Murota-Shioura '99] ‘

’

generalize

necessary /“sufficient generalize convexity

1
. . \ ." Grassmann-Plucker
condition for price oV to discrete domains
1 1
|

. relations
» adjustment to converge ;! '
’ . ’ .
N, et K . M-discrete concave %, valuated matroids
L4 L4 L4
\\gross su stltutesx, \\ o ‘~\matr0|da| maps .’

~ ~
""""""""""""
------------------

o In particular S € D(v;p) in poly-time.

e Proof through discrete differential equations

| |

..--—

’

4



Discrete Differential Equations

o Given a function v : 2™ — R we define the discrete

derivative with respect to ¢ € |n| as the function

O;v : 2"\ — R which is given by:
0;v(S) =v(SU1) —v(S5)

(another name for the marginal)



Discrete Differential Equations

o Given a function v : 2™ — R we define the discrete

derivative with respect to ¢ € |n| as the function

O;v : 2"\ — R which is given by:
0;v(S) =v(SU1) —v(S5)

(another name for the marginal)

e |f we apply it twice we get:
0;;v(8) := 9;0;v(S) =v(SUij) —v(SUI) —v(SUJ)+ v(S)

® SmeOdU|arity: 8@]0(‘9) < O



Discrete Differential Equations

[Reijnierse, Gellekom, Potters] A function v : 2" — R

s in gross substitutes iff it satisfies:

aZU(S) S max(@ikv(S),ﬁkjv(S)) < 0

condition on the discrete Hessian.

ldea: A function is in GS iff there is not price such that:
D(v;p) ={5,5Uij} or D(v;p) ={SUk,SUijj

If v is not submodular, we can construct a price of the
first type. If O0;;v(S) > max(0;xv(S), 0k;v(S)) then we

can find a certificate of the second type.



Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)

o Verification problem: given a partition S1,-..,59m

find whether it is optimal.

» Walrasian prices: given the optimal partition (S7,...,5;,)

find a price such that S, € argmaxg v;(S) — p(5)



Algorithmic Problems

e Techniques:
e [atonnement
e Linear Programming
o Gradient Descent
e Cutting Plane Methods

e Combinatorial Algorithms



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ) . v;(S)Zis
> g xis = 1,Vi € [m]
> i 255, Tis = 1,Vj € [n]
ris € 10,1}




Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ) . v;(S)Zis
> g xis = 1,Vi € [m]
> i 255, Tis = 1,Vj € [n]
r;s € (0, 1]




Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ) . v;(S)Zis
> g xis = 1,Vi € [m]
> i 255, Tis = 1,Vj € [n]
r;s € (0, 1]

min y ; u; + ), P
ui > 0i(S) = D jcsPjVi, S
P > O,ui >0

primal dual



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max Zz Ui(S)%'S. min ZZ u; + Zj D;
S oxis = 1,Vi € [m] s 5 s
D i 255 Tis = 1,Vj € [n] jes P

> 0,u; >0
z;s € [0, 1] o=t =

primal dual

e For GS, the IP is integral: Wip < Wip = Wp_ip

e Consider a Walrasian equilibrium and p the Walrasian

prices and u the agent utilities. Then it is a solution to
the dual, so: Wp_rp < Weq = Wip



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ) . v;(S)Zis
> g xis = 1,Vi € [m]
> i 255, Tis = 1,Vj € [n]
r;s € (0, 1]

min y ; u; + ), P
ui > 0i(S) = D jcsPjVi, S
P > O,ui >0

primal dual



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max Zz Ui(S)%'S. min ZZ u; + Zj D;
S oxis = 1,Vi € [m] s 5 s
D i 255 Tis = 1,Vj € [n] jes P

> 0.u; >0
zis € [0, 1] br=mis

primal dual

e In general, Walrasian equilibrium exists iff LP is integral.



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max Zz Ui(S)%'S. min ZZ u; + Z]‘ D;
S oxis = 1,Vi € [m] s 5 s
D i 255 Tis = 1,Vj € [n] jes P

> 0.u; >0
zis € [0, 1] br=mis

primal dual

In general, Walrasian equilibrium exists iff LP is integral.

e Separation oracle for the dual: u; = max vi(S) — p(5)

Is the demand oracle problem.



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ) . v;(S)Zis
> g xis = 1,Vi € [m]
> i 255, Tis = 1,Vj € [n]
r;s € (0, 1]

min y ; u; + ), P
ui > 0i(S) = D jcsPjVi, S
P > O,ui >0

primal dual



Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ZZ vi(S)Tis min ZZ Uj T Zj Pj

> g Tis = 1,Vi € /m]
i > vi(S) — . V‘)S
2.i2us35%is = 1,95 € [n) ui 2 vi(5) = 2jes PiVi
p]>07uz>0

Tr;s € [O, 1] R o

primal dual

Walrasian equilibrium exists + demand oracle in poly-time

= Welfare problem in poly-time

[Roughgarden, Talgam-Cohen] Use complexity theory to

show non-existence of equilibrium, e.g. budget additive.



Gradient Descent

e« We can Lagrangify the dual constraints and obtain the

following convex potential function:

P(p) = ), maxg|v;(S) — p(S)| + Zj Dj

e Theorem: the set of Walrasian prices (when they exist)

are the set of minimizers of .

0jo(p) =1—_ ;17 € Sil; Si € D(vi;p)
o Gradient descent: increase price of over-demanded items

and decrease price of over-demanded items.
e [atonnement: Pj <— Pj — €-5gN aj¢(l?)



Comparing Methods

method oracle running-time



How to access the input




How to access the input

Value oracle:

given i and S:
query v;(.5)



How to access the input

Value oracle: Demand oracle:

given i and S: given i and p:
query v; (5). query S € D(v;,p)



How to access the input

Value oracle: Demand oracle: Aggregate Demand:
given i and S: given i and p: given p, query.
query v;(.5). query S € D(vi,p) >, i3S € D(vi,p)



Comparing Methods

method oracle running-time

tatonnement/GD  aggreg demand  pseudo-poly



Comparing Methods

method oracle running-time

tatonnement/GD  aggreg demand  pseudo-poly

linear program demand/value  weakly-poly



Comparing Methods

method

tatonnement/GD

linear program

cutting plane

e [PL-Wong]: We can compute an exact equilibrium

oracle

aggreg demand

demand/value

aggreg demand

running-time

pseudo-poly

WEa

WEa

K

K

y-PO
y-PO

with O(n) calls to an aggregate demand oracle.

y
y



Comparing Methods

method

tatonnement/GD

linear program

cutting plane

oracle

aggreg demand

demand/value

aggreg demand

running-time

pseudo-poly

WEa

WEa

K

K

y-PO
y-PO

y
y



Comparing Methods

method oracle

tatonnement/GD  aggreg demand
linear program demand/value

cutting plane aggreg demand

combinatorial value

running-time

pseudo-poly

WEa

WEa

K

K

y-PO
y-PO

y
y

strongly-poly



Comparing Methods

method oracle running-time

tatonnement/GD  aggreg demand  pseudo-poly

linear program demand/value  weakly-poly
cutting plane aggreg demand  weakly-poly
combinatorial value strongly-poly

e [Murota]: We can compute an exact equilibrium

for gross susbtitutes in O((mn + n3)Ty) time.



Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)

o Verification problem: given a partition S1,-..,59m

find whether it is optimal.

» Walrasian prices: given the optimal partition (S7,...,5;,)

find a price such that S, € argmaxg v;(S) — p(5)




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.

Weh, ke — UZ(SZ) — U@(Sz U k’)



Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.



Computing Walrasian prices

e Given a partition S4,...,S,, we want to find prices

such that S; € argmaxg v;(.S) — p(.5)

e For GS, we only need to check that no buyer want to

add, remove or swap items.




Computing Walrasian prices

e Theorem: the allocation is optimal if the exchange

graph has no negative cycle.

e Proof: if no negative cycles the distance is well defined.
So let pj = —dist(@,7) then:

dist(¢, k) < dist(¢, j) + wjy
vi(S;) = vi(S; Uk \ J) — pr + pj

And since S; is locally-opt then it is globally opt.
Conversely: Walrasian prices are a dual certificate

showing that no negative cycles exist.



Computing Walrasian prices

e Theorem: the allocation is optimal if the exchange

graph has no negative cycle.

e Proof: if no negative cycles the distance is well defined.
So let pj = —dist(@,7) then:

dist(¢, k) < dist(e, ) + wjk
0;(S;) > vi(S; Uk N\ J) — pr + p;

And since S; is locally-opt then it is globally opt.
Conversely: Walrasian prices are a dual certificate

showing that no negative cycles exist.

e Nice consequence: Walrasian prices form a lattice.



Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)

o Verification problem: given a partition S1,-..,59m

find whether it is optimal.

» Walrasian prices: given the optimal partition (S7,...,5;,)

find a price such that S, € argmaxg v;(S) — p(5)



Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)

o Verification problem: given a partition S1,-..,59m

find whether it is optimal.

» Walrasian prices: given the optimal partition (S7,...,5;,)

find a price such that S, € argmaxg v;(S) — p(5)




Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)

o Verification problem: given a partition S1,-..,59m

find whether it is optimal.

» Walrasian prices: given the optimal partition (S7,...,5;,)

find a price such that S, € argmaxg v;(S) — p(5)




Incremental Algorithm

e For each t =1..n we will solve pro

optimal allocation of items [t] = {:

e Problem Wjis easy.

blem W; to find the

..t} to m buyers.

o Assume now we solved W; getting allocation Si,..., 5

and a certificate p = maximal Walrasian prices.




Incremental Algorithm

e For each t =1..n we will solve pro

optimal allocation of items [t] = {:

e Problem Wjis easy.

blem W; to find the

..t} to m buyers.

o Assume now we solved W; getting allocation Si,..., 5

and a certificate p = maximal Walrasian prices.




Incremental Algorithm

e For each t =1..n we will solve pro

optimal allocation of items [t] = {:

e Problem Wjis easy.

blem W; to find the

..t} to m buyers.

o Assume now we solved W; getting allocation Si,..., 5

and a certificate p = maximal Walrasian prices.




Incremental Algorithm

e Algorithm: compute shortest path from ¢ to ¢t + 1

e Update allocation by implementing path swaps




Incremental Algorithm

e Algorithm: compute shortest path from ¢ to ¢t + 1

e Update allocation by implementing path swaps




Incremental Algorithm

e Algorithm: compute shortest path from ¢ to ¢t + 1

e Update allocation by implementing path swaps




Incremental Algorithm

e Algorithm: compute shortest path from ¢ to ¢t + 1

e Update allocation by implementing path swaps

e Graph has O(t* + mt) non-negative edges
e After n iterations of Dijkstra we get O(n® + n’m)



Incremental Algorithm

~

e Proof that new allocation S ...S,, is optimal

e Define the new prices p; = — dist(¢, j)

e (1) New prices are also a certificate for S;....5,,

o (2) vi(Si) —p(S:) = vi(Si) — B(5:)

e Hence, S;...S,, and p are Walrasian prices.



Closure properties

o If v1,v2 € GS we might not have v1 + v2 € GS



Closure properties

o If v1,v2 € GS we might not have v1 + v2 € GS

e Some preserving operations:
o affine transformation (S) = v(S) +po — >_,c 5 Pi
e endowment ¢(S) = v(S|X)
e convolution v1 * v2(S) = maxpcgvi(T) +va(S\T)
e strong-quotient-sum

e tree-concordant-sum



Closure properties

o If v1,v2 € GS we might not have v1 + v2 € GS

e Some preserving operations:

affine transformation 0(S) = v(S) +po — >, cq P
endowment 7(S) = v(S5|X)

convolution vy * v3(S) = maxpcgvi (1) + va(S\ T
strong-quotient-sum

tree-concordant-sum

e Open question: can we construct all gross substitutes

from matroid rank functions and those operations 7

e Some progress: See talk by Eric Balkanski on Thu



End of Part |



