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Some notation to start
• Discrete sets of goods:  

• Valuation function 

• Given prices            define  

• Demand correspondence  

• Demand oracle 

• Value oracle  

• Marginals 

[n] = {1, . . . , n}

v : 2[n] ! R

p 2 Rn vp(S) = v(S)� p(S)

D(v; p) = argmaxS vp(S)

OD(v, p) 2 D(v; p)

v(S|T ) = v(S [ T )� v(T )

OV (v, S) = v(S)
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Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)
S4 2 D(v4, p)

; 2 D(v3, p)



• Market equilibrium: prices           s.t.                   
i.e. each good is demanded by exactly one buyer.

Walrasian equilibrium
p 2 Rn Si 2 D(vi, p)

First Welfare Theorem: in equilibrium the welfare 
                                          is maximized.

P
i vi(Si)

(proof: LP duality)

When do equilibria exist ? 
How do markets converge to equilibrium prices ? 

How to compute a Walrasian equilibrium ?
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• What else ?

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity. 

• When it ends                   in the limit         ✏ ! 0Si 2 D(vi; p)

• The only condition left is that      

• For that we need: 

[iSi = [n]

Si ✓ Xi 2 D(vi; p
i)

• Definition: A valuation satisfied gross substitutes if for 
all prices          and                 there is  
s.t. 

p  p0 S 2 D(v; p) X 2 D(v; p0)

S \ {i; pi = p0i} ✓ X

• With the new definition, the algorithm always keeps a partition.
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Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS 

valuations, then Walrasian equilibrium always exists. 

• Some examples of GS: 
• additive functions 
• unit-demand 
• matching valuations           max matching from S 
• matroid-matching

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Open: GS ?= matroid-matching



Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS 

valuations, then Walrasian equilibrium always exists. 

• Theorem [Gul-Stachetti]: If a class     of valuations 
contains all unit-demand valuations and Walrasian 
equilibrium always exists then   C ✓ GS

C



Valuated Matroids
• Given vectors                       define 

 

for    prime               . 

• Question in algebra:  

• Solution is a greedy algorithm: start with any non-

degenerate set and go over each items and replace it by 

the one that minimizes                    . 

• [DW]: Grassmann-Plucker relations look like matroid cond

v1, . . . , vm 2 Qn

 p(v1, . . . , vn) = n if det(v1, . . . , vn) = p�n · a/b

p a, b, p 2 Z

min
vi2V

 p(v1, . . . , vn) s.t. det(v1, . . . , vn) 6= 0

 p(v1, . . . , vn)



Valuated Matroids
• Definition: a function                   is a valuated 

matroid if the “Greedy is optimal”.

v :
�[n]

k

�
! R



Matroidal maps
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the greedy algorithm :           and 

v : 2[n] ! R

p 2 Rn D(v; p)

S0 = ;
St = St�1 [ {it} for it 2 argmaxi vp(i|St)



Matroidal maps
• Definition: a function                 is a matroidal map if 

for every           a set in           can be obtained by 

the greedy algorithm :           and 

v : 2[n] ! R

p 2 Rn D(v; p)

S0 = ;
St = St�1 [ {it} for it 2 argmaxi vp(i|St)

• Definition: a subset system               is a matroid if 

for every           the problem              can be solved 

by the greedy algorithm. 

M ✓ 2[n]

p 2 Rn max
S2M

p(S)
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Discrete Concavity
• A function                 is discrete concave if for all 

         all local minima of     are global minima. I.e. 
 
 
 
 
then                                 . In particular local 
search always converges. 

• [Murota ’96] M-concave (generalize valuated matroids) 
[Murota-Shioura ’99]      -concave functions

v : 2[n] ! R
p 2 Rn vp

vp(S) � vp(S [ i), 8i /2 S

vp(S) � vp(S \ j), 8j 2 S

vp(S) � vp(S [ i \ j), 8i /2 S, j 2 S

vp(S) � vp(T ), 8T ✓ [n]

M \
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• [Fujishige-Yang] A function                 is gross 

substitutes iff it is a matroidal map iff it is discrete 
concave.

v : 2[n] ! R

• Proof through discrete differential equations
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Discrete Differential Equations
• Given a function                  we define the discrete 

derivative with respect to          as the function  
                     which is given by: 
 
 

(another name for the marginal)

v : 2[n] ! R
i 2 [n]

@iv : 2[n]\i ! R

@iv(S) = v(S [ i)� v(S)

• If we apply it twice we get: 
 

• Submodularity: 

@ijv(S) := @j@iv(S) = v(S [ ij)� v(S [ i)� v(S [ j) + v(S)

@ijv(S)  0



Discrete Differential Equations
• [Reijnierse, Gellekom, Potters] A function  

is in gross substitutes iff it satisfies: 
 
 

condition on the discrete Hessian.

v : 2[n] ! R

@ijv(S)  max(@ikv(S), @kjv(S))  0

• Idea: A function is in GS iff there is not price such that: 
                                 or 
 

If v is not submodular, we can construct a price of the 
first type. If                                              then we 
can find a certificate of the second type. 

D(v; p) = {S, S [ ij} D(v; p) = {S [ k, S [ ij}

@ijv(S) > max(@ikv(S), @kjv(S))



Algorithmic Problems
• Welfare problem: given m agents with  

find a partition                of      maximizing  

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that 

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm



Algorithmic Problems
• Techniques: 

• Tatonnement 
• Linear Programming 
• Gradient Descent 
• Cutting Plane Methods 
• Combinatorial Algorithms
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• For GS, the IP is integral: 
• Consider a Walrasian equilibrium and p the Walrasian 

prices and u the agent utilities. Then it is a solution to 
the dual, so: 

WIP  WLP = WD-LP

WD-LP  Weq = WIP
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• Separation oracle for the dual: 
is the demand oracle problem. 

ui � max
S

vi(S)� p(S)

• In general, Walrasian equilibrium exists iff LP is integral.
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Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

• Walrasian equilibrium exists + demand oracle in poly-time 
= Welfare problem in poly-time 

• [Roughgarden, Talgam-Cohen] Use complexity theory to 
show non-existence of equilibrium, e.g. budget additive.



Gradient Descent
• We can Lagrangify the dual constraints and obtain the 

following convex potential function:

�(p) =
P

i maxS [vi(S)� p(S)] +
P

j pj

• Theorem: the set of Walrasian prices (when they exist) 
are the set of minimizers of   .�

@j�(p) = 1�
P

i 1[j 2 Si];Si 2 D(vi; p)

• Gradient descent: increase price of over-demanded items 
and decrease price of over-demanded items. 

• Tatonnement: pj  pj � ✏ · sgn @j�(p)



Comparing Methods
method oracle running-time
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How to access the input

Value oracle: 
given i and S: 
query       .vi(S)

Demand oracle: 
given i and p:  

query             .S 2 D(vi, p)

Aggregate Demand: 
given p, query. 

P
i Si;Si 2 D(vi, p)
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Comparing Methods

• [PL-Wong]: We can compute an exact equilibrium 
with        calls to an aggregate demand oracle.Õ(n)
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Comparing Methods
method oracle running-time

tatonnement/GD aggreg demand pseudo-poly
linear program demand/value weakly-poly
cutting plane aggreg demand weakly-poly
combinatorial value strongly-poly

• [Murota]: We can compute an exact equilibrium 
for gross susbtitutes in                        time.Õ((mn+ n

3)TV )



Algorithmic Problems
• Welfare problem: given m agents with  

find a partition                of      maximizing  

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that 

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm
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such that 
S1, . . . , Sm
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• For GS, we only need to check that no buyer want to 
add, remove or swap items.
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Computing Walrasian prices
• Theorem: the allocation is optimal if the exchange 

graph has no negative cycle. 
• Proof: if no negative cycles the distance is well defined. 

So let                         then:  
 
 
 
And since     is locally-opt then it is globally opt. 
Conversely: Walrasian prices are a dual certificate 
showing that no negative cycles exist.
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Computing Walrasian prices
• Theorem: the allocation is optimal if the exchange 

graph has no negative cycle. 
• Proof: if no negative cycles the distance is well defined. 

So let                         then:  
 
 
 
And since     is locally-opt then it is globally opt. 
Conversely: Walrasian prices are a dual certificate 
showing that no negative cycles exist.

pj = � dist(�, j)

vi(Si) � vi(Si [ k \ j)� pk + pj

dist(�, k)  dist(�, j) + wjk

Si

• Nice consequence: Walrasian prices form a lattice.
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Incremental Algorithm
• For each             we will solve problem      to find the 

optimal allocation of items                 to     buyers. 
• Problem      is easy. 
• Assume now we solved      getting allocation  

and a certificate     = maximal Walrasian prices.

m

W1

p

S1, . . . , Sm

w�ik = vi(Si)� vi(Si [ k)+pkwj�i0 = vi(Si)� vi(Si \ j)�pj

wjk = vi(Si)� vi(Si [ k \ j)+pk � pj
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Incremental Algorithm
• Algorithm: compute shortest path from    to         
• Update allocation by implementing path swaps

� t+ 1

• Graph has                 non-negative edges 
• After n iterations of Dijkstra we get 

O(t2 +mt)

Õ(n3 + n
2
m)



Incremental Algorithm
• Proof that new allocation              is optimal 
• Define the new prices 

• (1) New prices are also a certificate for  
• (2)                                           
• Hence,              and    are Walrasian prices.

p̃j = � dist(�, j)

S̃1 . . . S̃m

S1 . . . Sm

vi(Si)� p̃(Si) = vi(S̃i)� p̃(S̃i)

S̃1 . . . S̃m p̃
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Closure properties
• If                 we might not have v1, v2 2 GS v1 + v2 2 GS

• Some preserving operations: 
• affine transformation  
• endowment 
• convolution 
• strong-quotient-sum 
• tree-concordant-sum

ṽ(S) = v(S) + p0 �
P

i2S pi

v1 ⇤ v2(S) = maxT✓S v1(T ) + v2(S \ T )
ṽ(S) = v(S|X)

• Open question: can we construct all gross substitutes 
from matroid rank functions and those operations ? 
• Some progress: See talk by Eric Balkanski on Thu



End of Part I


