Gross Substitutes
Tutonal

Part |: Combinatorial structure and algorithms
(Renato Paes Leme, Google)

Part |l: Economics and the boundaries of substitutability
(Inbal Talgam-Cohen, Hebrew University)
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Some notation to start

Discrete sets of goods: [] = {1,...,n}

Valuation function v : 2" = R

Given prices p € R"™ define v,(S) = v(S) — p(5)
Demand correspondence D(v;p) = argmaxg v, (S5)
Demand oracle Op(v,p) € D(v;p)

Value oracle Oy (v,S5) = v(S5)

Marginals v(S|T) =v(SUT) — v(T)
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Walrasian equilibrium

e Market equilibrium: prices p € R"s.t. S; € D(v;, p)
i.e. each good is demanded by exactly one buyer.

First Welfare Theorem: in equilibrium the welfare

Zi v; (S;) is maximized.

(proof: LP duality)

When do equilibria exist ?
How do markets converge to equilibrium prices 7

How to compute a Walrasian equilibrium 7



Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

2€

n goods

m buyers

e Initialize S; = [n], S; =0 and prices p; =0
o While there is S; ¢ D(v;,p") assign X; € D(v;; p’)
to i and increase the prices in X; \ S; by €.




Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends 5, € D(Uz';pi)



Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends S; € D(v;;p) in the limit ¢ — 0



Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends S; € D(v;;p) in the limit ¢ — 0

e What else ?



Walrasian tatonnement

This process always ends, otherwise prices go to infinity.

When it ends S; € D(v;;p) in the limit € — 0
What else ?

The only condition left is that U;S; = [n,

For that we need: S; C X; € D(v;;p')



Walrasian tatonnement

This process always ends, otherwise prices go to infinity.

When it ends S; € D(v;;p) in the limit € — 0
What else 7

The only condition left is that U;S; = [n,

For that we need: S; C X; € D(v;;p")

Definition: A valuation satisfied gross substitutes if for
all prices p <p'and S € D(v;p) there is X € D(v;p’)
s.t. SN{i;pi=p;} CX



Walrasian tatonnement

e This process always ends, otherwise prices go to infinity.

e When it ends S; € D(v;;p) in the limit ¢ — 0
e What else 7

e The only condition left is that U;S; = [n]

e For that we need: S; C X; € D(Uq;;pi)

e Definition: A valuation satisfied gross substitutes if for
all prices p <p'and S € D(v;p) there is X € D(v;p’)
s.t. SN{i;pi=p;} CX

o With the new definition, the algorithm always keeps a partition.
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e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:
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unit-demand v(S) = max;cg v(7)
matching valuations v(S) = max matching from S

matroid-matching
‘Yv\O..-J_rO\ 0&_

2




Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Some examples of GS:

additive functions v(S) = > .. v(¢)
unit-demand v(S) = max;cg v(7)
matching valuations v(S) = max matching from S

matroid-matching Open: GS ?= matroid-matching
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Walrasian equilibrium

e Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

e Theorem [Gul-Stachetti]: If a class C of valuations
contains all unit-demand valuations and Walrasian
equilibrium always exists then C C GS



Valuated Matroids

Given vectors V1, ..., U, € Q"define

Up(V1,...,0) =nif det(vy,...,v,) =p " -a/b
for pprime a,b,p € Z
Question in algebra:

min ¥, (v1,...,v,) s.t. det(vy,...,v,) #0

v; €V
Solution is a greedy algorithm: start with any non-
degenerate set and go over each items and replace it by

the one that minimizes ¥, (v1,...,v,).

[DW]: Grassmann-Plucker relations look like matroid cond



Valuated Matroids

e Definition: a function v : ([Z]) — R is a valuated

matroid if the "Greedy is optimal”.



Matroidal maps

e Definition: a function v : 2"/ —s R is a matroidal map if
for every p € R"™ a set in D(wv;p) can be obtained by

the greedy algorithm : Sy = ) and
St — St—l U {Zt} for it - argimax., vp(i\St)



Matroidal maps

e Definition: a function v : 2"/ —s R is a matroidal map if
for every p € R"™ a set in D(wv;p) can be obtained by

the greedy algorithm : Sy = ) and
St — St—l U {Zt} for it - argimax., vp(i\St)

o Definition: a subset system M C 2" is a matroid if

for every p € R" the problem max p(S) can be solved

by the greedy algorithm.
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or other discrete sets such as the basis of a matroid)
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Discrete Concavity

o A function v : 2"l 5 R is discrete concave if for all

p € R"all local minima of ¢, are global minima. l.e.
p

vp(S) > v,(SU), Ve & S
up(S) = vp(S\j),Vj€S
vp(S) > v, (SUIN\j),Vig S jes

then v,(S) > v,(T"),VT C [n]. In particular local

search always converges.

e [Murota '96] M-concave (generalize valuated matroids)

Murota-Shioura '99] M?%-concave functions
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Discrete Differential Equations

o Given a function v : 2™ — R we define the discrete

derivative with respect to ¢ € |n| as the function

O;v : 2"\ — R which is given by:
0;v(S) =v(SU1) —v(S5)

(another name for the marginal)



Discrete Differential Equations

o Given a function v : 2™ — R we define the discrete

derivative with respect to ¢ € |n| as the function

O;v : 2"\ — R which is given by:
0;v(S) =v(SU1) —v(S5)

(another name for the marginal)

e |f we apply it twice we get:
0;;v(8) := 9;0;v(S) =v(SUij) —v(SUI) —v(SUJ)+ v(S)

® SmeOdU|arity: 8@]0(‘9) < O



Discrete Differential Equations

[Reijnierse, Gellekom, Potters] A function v : 2" — R

s in gross substitutes iff it satisfies:

aZU(S) S max(@ikv(S),ﬁkjv(S)) < 0

condition on the discrete Hessian.

ldea: A function is in GS iff there is not price such that:
D(v;p) ={5,5Uij} or D(v;p) ={SUk,SUijj

If v is not submodular, we can construct a price of the
first type. If O0;;v(S) > max(0;xv(S), 0k;v(S)) then we

can find a certificate of the second type.



Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)

o Verification problem: given a partition S1,-..,59m

find whether it is optimal.

» Walrasian prices: given the optimal partition (S7,...,5;,)

find a price such that S, € argmaxg v;(S) — p(5)



Algorithmic Problems

e Techniques:
e [atonnement
e Linear Programming
o Gradient Descent
e Cutting Plane Methods

e Combinatorial Algorithms
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e For GS, the IP is integral: Wip < Wip = Wp_ip

e Consider a Walrasian equilibrium and p the Walrasian

prices and u the agent utilities. Then it is a solution to
the dual, so: Wp_rp < Weq = Wip
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e Separation oracle for the dual: u; = max vi(S) — p(5)

Is the demand oracle problem.
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Linear Programming

e [Nisan-Segal|] Formulate this problem as an LP:

max ZZ vi(S)Tis min ZZ Uj T Zj Pj

> g Tis = 1,Vi € /m]
i > vi(S) — . V‘)S
2.i2us35%is = 1,95 € [n) ui 2 vi(5) = 2jes PiVi
p]>07uz>0

Tr;s € [O, 1] R o

primal dual

Walrasian equilibrium exists + demand oracle in poly-time

= Welfare problem in poly-time

[Roughgarden, Talgam-Cohen] Use complexity theory to

show non-existence of equilibrium, e.g. budget additive.



Gradient Descent

e« We can Lagrangify the dual constraints and obtain the

following convex potential function:

P(p) = ), maxg|v;(S) — p(S)| + Zj Dj

e Theorem: the set of Walrasian prices (when they exist)

are the set of minimizers of .

0jo(p) =1—_ ;17 € Sil; Si € D(vi;p)
o Gradient descent: increase price of over-demanded items

and decrease price of over-demanded items.
e [atonnement: Pj <— Pj — €-5gN aj¢(l?)



Comparing Methods

method oracle running-time
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How to access the input

Value oracle: Demand oracle:

given i and S: given i and p:
query v; (5). query S € D(v;,p)



How to access the input

Value oracle: Demand oracle: Aggregate Demand:
given i and S: given i and p: given p, query.
query v;(.5). query S € D(vi,p) >, i3S € D(vi,p)
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Comparing Methods

method oracle running-time

tatonnement/GD  aggreg demand  pseudo-poly

linear program demand/value  weakly-poly
cutting plane aggreg demand  weakly-poly
combinatorial value strongly-poly

e [Murota]: We can compute an exact equilibrium

for gross susbtitutes in O((mn + n3)Ty) time.



Algorithmic Problems

e Welfare problem: given m agents with vy, ..., v, : ol R

find a partition S1,...,Sm of || maximizing D> Vi(55)
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Computing Walrasian prices

e Theorem: the allocation is optimal if the exchange

graph has no negative cycle.

e Proof: if no negative cycles the distance is well defined.
So let pj = —dist(@,7) then:

dist(¢, k) < dist(e, ) + wjk
0;(S;) > vi(S; Uk N\ J) — pr + p;

And since S; is locally-opt then it is globally opt.
Conversely: Walrasian prices are a dual certificate

showing that no negative cycles exist.

e Nice consequence: Walrasian prices form a lattice.
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Incremental Algorithm

e Algorithm: compute shortest path from ¢ to ¢t + 1

e Update allocation by implementing path swaps

e Graph has O(t* + mt) non-negative edges
e After n iterations of Dijkstra we get O(n® + n’m)



Incremental Algorithm

~

e Proof that new allocation S ...S,, is optimal

e Define the new prices p; = — dist(¢, j)

e (1) New prices are also a certificate for S;....5,,

o (2) vi(Si) —p(S:) = vi(Si) — B(5:)

e Hence, S;...S,, and p are Walrasian prices.
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Closure properties

o If v1,v2 € GS we might not have v1 + v2 € GS

e Some preserving operations:

affine transformation 0(S) = v(S) +po — >, cq P
endowment 7(S) = v(S5|X)

convolution vy * v3(S) = maxpcgvi (1) + va(S\ T
strong-quotient-sum

tree-concordant-sum

e Open question: can we construct all gross substitutes

from matroid rank functions and those operations 7

e Some progress: See talk by Eric Balkanski on Thu



End of Part |



