
Gross Substitutes
Tutorial

Part I: Combinatorial structure and algorithms
 (Renato Paes Leme, Google)

Part II: Economics and the boundaries of substitutability
 (Inbal Talgam-Cohen, Hebrew University)

Three seemingly-independent problems

Three seemingly-independent problems

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

Three seemingly-independent problems

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

[Dress-Wenzel ’91]
generalize

Grassmann-Plucker
relations

valuated matroids
matroidal maps

Three seemingly-independent problems

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

[Dress-Wenzel ’91]
generalize

Grassmann-Plucker
relations

valuated matroids
matroidal maps

[Murota-Shioura ’99]
generalize convexity
to discrete domains

M-discrete concave

Three seemingly-independent problems

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

[Dress-Wenzel ’91]
generalize

Grassmann-Plucker
relations

valuated matroids
matroidal maps

[Murota-Shioura ’99]
generalize convexity
to discrete domains

M-discrete concave

Discrete Convex
Analysis

Some notation to start
• Discrete sets of goods:

• Valuation function

• Given prices define

• Demand correspondence

• Demand oracle

• Value oracle

• Marginals

[n] = {1, . . . , n}

v : 2[n] ! R

p 2 Rn vp(S) = v(S)� p(S)

D(v; p) = argmaxS vp(S)

OD(v, p) 2 D(v; p)

v(S|T) = v(S [T)� v(T)

OV (v, S) = v(S)

Walrasian equilibrium

n goods

m buyers

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

v1 v2 v3 v4

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p)

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)

; 2 D(v3, p)

• Valuations

Walrasian equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)
S4 2 D(v4, p)

; 2 D(v3, p)

• Market equilibrium: prices s.t.  
i.e. each good is demanded by exactly one buyer.

Walrasian equilibrium
p 2 Rn Si 2 D(vi, p)

First Welfare Theorem: in equilibrium the welfare 
 is maximized.

P
i vi(Si)

(proof: LP duality)

When do equilibria exist ?
How do markets converge to equilibrium prices ?

How to compute a Walrasian equilibrium ?

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0 0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0 0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0 0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏✏ 2

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏✏ 2

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏✏ 2

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏✏ 22

• Initialize and prices
• While there is assign  

to i and increase the prices in by .

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

0 0 0

S1 = [n], Si = ; pj = 0

Si /2 D(vi, p
i)

pij = pj if j 2 Si

pij = pj + ✏ if j /2 Si

Xi 2 D(vi; p
i
i)

Xi \ Si ✏

✏ ✏✏ 22

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity.

• When it ends Si 2 D(vi; p
i)

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity.

• When it ends in the limit ✏ ! 0Si 2 D(vi; p)

• What else ?

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity.

• When it ends in the limit ✏ ! 0Si 2 D(vi; p)

• What else ?

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity.

• When it ends in the limit ✏ ! 0Si 2 D(vi; p)

• The only condition left is that

• For that we need:

[iSi = [n]

Si ✓ Xi 2 D(vi; p
i)

• What else ?

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity.

• When it ends in the limit ✏ ! 0Si 2 D(vi; p)

• The only condition left is that

• For that we need:

[iSi = [n]

Si ✓ Xi 2 D(vi; p
i)

• Definition: A valuation satisfied gross substitutes if for
all prices and there is  
s.t.

p  p0 S 2 D(v; p) X 2 D(v; p0)

S \ {i; pi = p0i} ✓ X

• What else ?

Walrasian tatonnement
• This process always ends, otherwise prices go to infinity.

• When it ends in the limit ✏ ! 0Si 2 D(vi; p)

• The only condition left is that

• For that we need:

[iSi = [n]

Si ✓ Xi 2 D(vi; p
i)

• Definition: A valuation satisfied gross substitutes if for
all prices and there is  
s.t.

p  p0 S 2 D(v; p) X 2 D(v; p0)

S \ {i; pi = p0i} ✓ X

• With the new definition, the algorithm always keeps a partition.

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S
• matroid-matching

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S
• matroid-matching

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
• additive functions
• unit-demand
• matching valuations max matching from S
• matroid-matching

v(S) =
P

i2S v(i)

v(S) = maxi2S v(i)
v(S) =

Open: GS ?= matroid-matching

Walrasian equilibrium
• Theorem [Kelso-Crawford]: If all agents have GS

valuations, then Walrasian equilibrium always exists.

• Theorem [Gul-Stachetti]: If a class of valuations
contains all unit-demand valuations and Walrasian
equilibrium always exists then C ✓ GS

C

Valuated Matroids
• Given vectors define 

 

for prime .

• Question in algebra:

• Solution is a greedy algorithm: start with any non-

degenerate set and go over each items and replace it by

the one that minimizes .

• [DW]: Grassmann-Plucker relations look like matroid cond

v1, . . . , vm 2 Qn

 p(v1, . . . , vn) = n if det(v1, . . . , vn) = p�n · a/b

p a, b, p 2 Z

min
vi2V

 p(v1, . . . , vn) s.t. det(v1, . . . , vn) 6= 0

 p(v1, . . . , vn)

Valuated Matroids
• Definition: a function is a valuated

matroid if the “Greedy is optimal”.

v :
�[n]

k

�
! R

Matroidal maps
• Definition: a function is a matroidal map if

for every a set in can be obtained by

the greedy algorithm : and

v : 2[n] ! R

p 2 Rn D(v; p)

S0 = ;
St = St�1 [{it} for it 2 argmaxi vp(i|St)

Matroidal maps
• Definition: a function is a matroidal map if

for every a set in can be obtained by

the greedy algorithm : and

v : 2[n] ! R

p 2 Rn D(v; p)

S0 = ;
St = St�1 [{it} for it 2 argmaxi vp(i|St)

• Definition: a subset system is a matroid if

for every the problem can be solved

by the greedy algorithm.

M ✓ 2[n]

p 2 Rn max
S2M

p(S)

Discrete Concavity
• A function is convex if for all , a

local minimum of is a global
minimum.

• Also, gradient descent converges for convex functions.
• We want to extend this notion to function in the

hypercube: (or lattice 
or other discrete sets such as the basis of a matroid)

f : Rn ! R p 2 Rn

fp(x) = f(x)� hp, xi

v : 2[n] ! R v : Z[n] ! R

Discrete Concavity
• A function is convex if for all , a

local minimum of is a global
minimum.

• Also, gradient descent converges for convex functions.
• We want to extend this notion to function in the

hypercube: (or lattice 
or other discrete sets such as the basis of a matroid)

f : Rn ! R p 2 Rn

fp(x) = f(x)� hp, xi

v : 2[n] ! R v : Z[n] ! R

Discrete Concavity
• A function is convex if for all , a

local minimum of is a global
minimum.

• Also, gradient descent converges for convex functions.
• We want to extend this notion to function in the

hypercube: (or lattice 
or other discrete sets such as the basis of a matroid)

f : Rn ! R p 2 Rn

fp(x) = f(x)� hp, xi

v : 2[n] ! R v : Z[n] ! R

Discrete Concavity
• A function is discrete concave if for all 

 all local minima of are global minima. I.e. 
 
 
 
 
then . In particular local
search always converges. 

• [Murota ’96] M-concave (generalize valuated matroids) 
[Murota-Shioura ’99] -concave functions

v : 2[n] ! R
p 2 Rn vp

vp(S) � vp(S [i), 8i /2 S

vp(S) � vp(S \ j), 8j 2 S

vp(S) � vp(S [i \ j), 8i /2 S, j 2 S

vp(S) � vp(T), 8T ✓ [n]

M \

Equivalence
• [Fujishige-Yang] A function is gross

substitutes iff it is a matroidal map iff it is discrete
concave.

v : 2[n] ! R

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

[Dress-Wenzel ’91]
generalize

Grassmann-Plucker
relations

valuated matroids
matroidal maps

[Murota-Shioura ’99]
generalize convexity
to discrete domains

M-discrete concave

Equivalence
• [Fujishige-Yang] A function is gross

substitutes iff it is a matroidal map iff it is discrete
concave.

v : 2[n] ! R

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

[Dress-Wenzel ’91]
generalize

Grassmann-Plucker
relations

valuated matroids
matroidal maps

[Murota-Shioura ’99]
generalize convexity
to discrete domains

M-discrete concave

• In particular in poly-time.S 2 D(v; p)

Equivalence
• [Fujishige-Yang] A function is gross

substitutes iff it is a matroidal map iff it is discrete
concave.

v : 2[n] ! R

• Proof through discrete differential equations

[Kelso-Crawford ’82]
necessary /“sufficient”

condition for price
adjustment to converge

gross substitutes

[Dress-Wenzel ’91]
generalize

Grassmann-Plucker
relations

valuated matroids
matroidal maps

[Murota-Shioura ’99]
generalize convexity
to discrete domains

M-discrete concave

• In particular in poly-time.S 2 D(v; p)

Discrete Differential Equations
• Given a function we define the discrete

derivative with respect to as the function  
 which is given by: 
 
 

(another name for the marginal)

v : 2[n] ! R
i 2 [n]

@iv : 2[n]\i ! R

@iv(S) = v(S [i)� v(S)

Discrete Differential Equations
• Given a function we define the discrete

derivative with respect to as the function  
 which is given by: 
 
 

(another name for the marginal)

v : 2[n] ! R
i 2 [n]

@iv : 2[n]\i ! R

@iv(S) = v(S [i)� v(S)

• If we apply it twice we get: 
 

• Submodularity:

@ijv(S) := @j@iv(S) = v(S [ij)� v(S [i)� v(S [j) + v(S)

@ijv(S)  0

Discrete Differential Equations
• [Reijnierse, Gellekom, Potters] A function  

is in gross substitutes iff it satisfies: 
 
 

condition on the discrete Hessian.

v : 2[n] ! R

@ijv(S)  max(@ikv(S), @kjv(S))  0

• Idea: A function is in GS iff there is not price such that: 
 or 
 

If v is not submodular, we can construct a price of the
first type. If then we
can find a certificate of the second type.

D(v; p) = {S, S [ij} D(v; p) = {S [k, S [ij}

@ijv(S) > max(@ikv(S), @kjv(S))

Algorithmic Problems
• Welfare problem: given m agents with  

find a partition of maximizing

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm

Algorithmic Problems
• Techniques:

• Tatonnement
• Linear Programming
• Gradient Descent
• Cutting Plane Methods
• Combinatorial Algorithms

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]{0, 1}

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

• For GS, the IP is integral:
• Consider a Walrasian equilibrium and p the Walrasian

prices and u the agent utilities. Then it is a solution to
the dual, so:

WIP  WLP = WD-LP

WD-LP  Weq = WIP

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

• In general, Walrasian equilibrium exists iff LP is integral.

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

• Separation oracle for the dual: 
is the demand oracle problem.

ui � max
S

vi(S)� p(S)

• In general, Walrasian equilibrium exists iff LP is integral.

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

Linear Programming
• [Nisan-Segal] Formulate this problem as an LP:

max
P

i vi(S)xiSP
S xiS = 1, 8i 2 [m]

P
i

P
S3j xiS = 1, 8j 2 [n]

xiS 2 [0, 1]

min
P

i ui +
P

j pj

ui � vi(S)�
P

j2S pj8i, S
pj � 0, ui � 0

primal dual

• Walrasian equilibrium exists + demand oracle in poly-time
= Welfare problem in poly-time

• [Roughgarden, Talgam-Cohen] Use complexity theory to
show non-existence of equilibrium, e.g. budget additive.

Gradient Descent
• We can Lagrangify the dual constraints and obtain the

following convex potential function:

�(p) =
P

i maxS [vi(S)� p(S)] +
P

j pj

• Theorem: the set of Walrasian prices (when they exist)
are the set of minimizers of .�

@j�(p) = 1�
P

i 1[j 2 Si];Si 2 D(vi; p)

• Gradient descent: increase price of over-demanded items
and decrease price of over-demanded items.

• Tatonnement: pj pj � ✏ · sgn @j�(p)

Comparing Methods
method oracle running-time

How to access the input

How to access the input

Value oracle:
given i and S: 
query .vi(S)

How to access the input

Value oracle:
given i and S: 
query .vi(S)

Demand oracle:
given i and p:  

query .S 2 D(vi, p)

How to access the input

Value oracle:
given i and S: 
query .vi(S)

Demand oracle:
given i and p:  

query .S 2 D(vi, p)

Aggregate Demand:
given p, query.

P
i Si;Si 2 D(vi, p)

Comparing Methods
method oracle running-time

tatonnement/GD aggreg demand pseudo-poly

Comparing Methods
method oracle running-time

tatonnement/GD aggreg demand pseudo-poly
linear program demand/value weakly-poly

Comparing Methods

• [PL-Wong]: We can compute an exact equilibrium 
with calls to an aggregate demand oracle.Õ(n)

method oracle running-time

tatonnement/GD aggreg demand pseudo-poly
linear program demand/value weakly-poly
cutting plane aggreg demand weakly-poly

Comparing Methods
method oracle running-time

tatonnement/GD aggreg demand pseudo-poly
linear program demand/value weakly-poly
cutting plane aggreg demand weakly-poly

Comparing Methods
method oracle running-time

tatonnement/GD aggreg demand pseudo-poly
linear program demand/value weakly-poly
cutting plane aggreg demand weakly-poly
combinatorial value strongly-poly

Comparing Methods
method oracle running-time

tatonnement/GD aggreg demand pseudo-poly
linear program demand/value weakly-poly
cutting plane aggreg demand weakly-poly
combinatorial value strongly-poly

• [Murota]: We can compute an exact equilibrium 
for gross susbtitutes in time.Õ((mn+ n

3)TV)

Algorithmic Problems
• Welfare problem: given m agents with  

find a partition of maximizing

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

wjk = vi(Si)� vi(Si [k \ j)

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

w�ik = vi(Si)� vi(Si [k)

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

wj�i0 = vi(Si)� vi(Si \ j)

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

w�i�i0 = 0

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

Computing Walrasian prices
• Given a partition we want to find prices

such that
S1, . . . , Sm

Si 2 argmaxS vi(S)� p(S)

• For GS, we only need to check that no buyer want to
add, remove or swap items.

Computing Walrasian prices
• Theorem: the allocation is optimal if the exchange

graph has no negative cycle.
• Proof: if no negative cycles the distance is well defined.

So let then:  
 
 
 
And since is locally-opt then it is globally opt. 
Conversely: Walrasian prices are a dual certificate
showing that no negative cycles exist.

pj = � dist(�, j)

vi(Si) � vi(Si [k \ j)� pk + pj

dist(�, k)  dist(�, j) + wjk

Si

Computing Walrasian prices
• Theorem: the allocation is optimal if the exchange

graph has no negative cycle.
• Proof: if no negative cycles the distance is well defined.

So let then:  
 
 
 
And since is locally-opt then it is globally opt. 
Conversely: Walrasian prices are a dual certificate
showing that no negative cycles exist.

pj = � dist(�, j)

vi(Si) � vi(Si [k \ j)� pk + pj

dist(�, k)  dist(�, j) + wjk

Si

• Nice consequence: Walrasian prices form a lattice.

Algorithmic Problems
• Welfare problem: given m agents with  

find a partition of maximizing

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm

Algorithmic Problems
• Welfare problem: given m agents with  

find a partition of maximizing

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm

Algorithmic Problems
• Welfare problem: given m agents with  

find a partition of maximizing

• Verification problem: given a partition 
find whether it is optimal. 

• Walrasian prices: given the optimal partition  
find a price such that

v1, . . . , vm : 2[n] ! R
S1, . . . , Sm [n]

P
i vi(Si)

(S⇤
1 , . . . , S

⇤
m)

S⇤
i 2 argmaxS vi(S)� p(S)

S1, . . . , Sm

Incremental Algorithm
• For each we will solve problem to find the

optimal allocation of items to buyers.
• Problem is easy.
• Assume now we solved getting allocation  

and a certificate = maximal Walrasian prices.

m

W1

p

S1, . . . , Sm

w�ik = vi(Si)� vi(Si [k)+pkwj�i0 = vi(Si)� vi(Si \ j)�pj

wjk = vi(Si)� vi(Si [k \ j)+pk � pj

t = 1..n Wt

[t] = {1..t}

Wt

Incremental Algorithm
• For each we will solve problem to find the

optimal allocation of items to buyers.
• Problem is easy.
• Assume now we solved getting allocation  

and a certificate = maximal Walrasian prices.

m

W1

p

S1, . . . , Sm

t = 1..n Wt

[t] = {1..t}

Wt

Incremental Algorithm
• For each we will solve problem to find the

optimal allocation of items to buyers.
• Problem is easy.
• Assume now we solved getting allocation  

and a certificate = maximal Walrasian prices.

m

W1

p

S1, . . . , Sm

t = 1..n Wt

[t] = {1..t}

Wt

Incremental Algorithm
• Algorithm: compute shortest path from to
• Update allocation by implementing path swaps

� t+ 1

Incremental Algorithm
• Algorithm: compute shortest path from to
• Update allocation by implementing path swaps

� t+ 1

Incremental Algorithm
• Algorithm: compute shortest path from to
• Update allocation by implementing path swaps

� t+ 1

Incremental Algorithm
• Algorithm: compute shortest path from to
• Update allocation by implementing path swaps

� t+ 1

• Graph has non-negative edges
• After n iterations of Dijkstra we get

O(t2 +mt)

Õ(n3 + n
2
m)

Incremental Algorithm
• Proof that new allocation is optimal
• Define the new prices

• (1) New prices are also a certificate for
• (2)
• Hence, and are Walrasian prices.

p̃j = � dist(�, j)

S̃1 . . . S̃m

S1 . . . Sm

vi(Si)� p̃(Si) = vi(S̃i)� p̃(S̃i)

S̃1 . . . S̃m p̃

Closure properties
• If we might not have v1, v2 2 GS v1 + v2 2 GS

Closure properties
• If we might not have v1, v2 2 GS v1 + v2 2 GS

• Some preserving operations:
• affine transformation
• endowment
• convolution
• strong-quotient-sum
• tree-concordant-sum

ṽ(S) = v(S) + p0 �
P

i2S pi

v1 ⇤ v2(S) = maxT✓S v1(T) + v2(S \ T)
ṽ(S) = v(S|X)

Closure properties
• If we might not have v1, v2 2 GS v1 + v2 2 GS

• Some preserving operations:
• affine transformation
• endowment
• convolution
• strong-quotient-sum
• tree-concordant-sum

ṽ(S) = v(S) + p0 �
P

i2S pi

v1 ⇤ v2(S) = maxT✓S v1(T) + v2(S \ T)
ṽ(S) = v(S|X)

• Open question: can we construct all gross substitutes
from matroid rank functions and those operations ?
• Some progress: See talk by Eric Balkanski on Thu

End of Part I

