

Non Clairvoyant Dynamic Mechanism

 Design

 Design}

Vahab Mirrokni
(Google)
Renato Paes Leme (Google)

Pingzhong Tang (Tsinghua)

Song Zuo
(Tsinghua)

Next generation of ad auction

- Classic auctions found their way to the web
- Designed for different domains: art, spectrum, ...

- Why use dynamic auctions ?
- Can improve both revenue and efficiency over static auctions (no tradeoffs)
- Can generate arbitrarily more revenue than static auctions.
- Combines the best of real time auctions and guaranteed contracts.

Towards practical dynamic auctions

- Current state:
- beautiful mathematical theory [...]
- polynomial time algorithms [PPPR], [ADH]
- understanding of competition complexity [LP]
- Barriers to a practical implementation:
- DP / LP solutions are not scalable
- relies on accurate forecasts
- assumes too much of buyer rationality / knowledge

Repeated Auctions Model

- Single buyer model
- For timestep $\mathrm{t}=1$... T
- item arrives (ad impression)
- buyer observes his type $v_{t} \sim F_{t}$
(sellers <- public info, buyer <- public info + private cookies)
- agent reports value \hat{v}_{t}
- allocation with probability $x_{t}\left(\hat{v}_{1 . . t}\right)$ and pays $p_{t}\left(\hat{v}_{1 . . t}\right)$
- buyer gets utility $u_{t}^{v_{t}}=v_{t} x_{t}\left(\hat{v}_{1 . . t}\right)-p_{t}\left(\hat{v}_{1 . . t}\right)$
- Buyer wants to maximize continuation utilities
$u_{t}^{v_{t}}\left(\hat{v}_{1 . . t} ; F_{1 . . T}\right)+\mathbb{E}_{F_{t+1 . . T}}\left[\sum_{\tau=t+1}^{T} u_{\tau}^{v_{\tau}}\left(\hat{v}_{1 . . \tau} ; F_{1 . . T}\right)\right]$

Design Space

- The auction is represented by allocation and payments:

$$
\begin{array}{ll}
x_{t}: \Theta^{t} \times(\Delta \Theta)^{T} \rightarrow[0,1] & x_{t}\left(\hat{v}_{1 . . t} ; F_{1 . . T}\right) \\
p_{t}: \Theta^{t} \times(\Delta \Theta)^{T} \rightarrow \mathbb{R}_{+} & p_{t}\left(\hat{v}_{1 . . t} ; F_{1 . . T}\right)
\end{array}
$$

- Constraints:
- Dynamic Incentive Compatibility (DIC)

$$
v_{t} \in \operatorname{argmax}_{\hat{v}_{t}} u_{t}^{v_{t}}\left(\hat{v}_{t} \ldots\right)+\mathbb{E}_{F_{t+1 . T}}\left[\sum_{\tau=t+1}^{T} u_{\tau}^{v_{\tau}}\left(\hat{v}_{t} \ldots\right)\right]
$$

- Ex-post Individual Rationality (ep-IR) $\sum_{t} u_{t} \geq 0$
- Objective function: $\operatorname{REV}^{*}\left(F_{1 . . T}\right)=\max \mathbb{E}_{F_{1 . . T}}\left[\sum_{t} p_{t}\left(v_{1 . . t}\right)\right]$

Cassandra's curse

- Optimal mechanism requires seller to know all distributions in advance (to solve the DP).
- The definition of DIC require buyer and seller to agree on distributions $F_{t+1}, F_{t+2}, \ldots, F_{T}$.
- Can we get mechanism that doesn't require common knowledge about the future?

- DIC:
$v_{t} \in \operatorname{argmax}_{\hat{v}_{t}} u_{t}^{v_{t}}\left(\hat{v}_{t} \ldots\right)+\mathbb{E}_{F_{t+1 . . T}}\left[\sum_{\tau=t+1}^{T} u_{\tau}^{v_{\tau}}\left(\hat{v}_{t} \ldots\right)\right]$

Cassandra's curse

- Optimal mechanism requires seller to know all distributions in advance (to solve the DP).
- The definition of DIC require buyer and seller to agree on distributions $F_{t+1}, F_{t+2}, \ldots, F_{T}$.
- Can we get mechanism that doesn't require common knowledge about the future?

- Super-DIC: for any beliefs $\tilde{F}_{t+1 . . T}$ $v_{t} \in \operatorname{argmax}_{\hat{v}_{t}} u_{t}^{v_{t}}\left(\hat{v}_{t} \ldots\right)+\mathbb{E}_{\tilde{F}_{t+1 . . T}}\left[\sum_{\tau=t+1}^{T} u_{\tau}^{v_{\tau}}\left(\hat{v}_{t} \ldots\right)\right]$
- Theorem (Cassandra's curse): Under super-DIC the revenue optimal mechanism is the optimal static auction.

Non-Clairvoyance

- Non-Clairvoyance: mechanism is measurable with respect to i.e. $v_{1 . . t}, F_{1 . . t} \quad x_{t}\left(v_{1 . . t} ; F_{1 . . t}\right), p_{t}\left(v_{1 . . t} ; F_{1 . . t}\right)$
- Entangled design: consider two items sequences:

$$
\left[\begin{array}{cc}
\stackrel{\rightharpoonup}{F_{a}} & \hat{F}_{g}
\end{array}\right] \quad\left[\begin{array}{cc}
\hat{F_{d}} & F_{0}
\end{array}\right]
$$

the non-clairvoyant mechanism needs to use the same rule for item 1. The clairvoyant can use different rules depending on what comes next.

- DIC for Non-Clairvoyant: buyers don't need to know the future to check DIC. The only requirement is that distribution F_{t} will be common knowledge in step t.

Non-Clairvoyance

- Non-Clairvoyance: mechanism is measurable with respect to i.e. $v_{1 . . t}, F_{1 . . t} \quad x_{t}\left(v_{1 . . t} ; F_{1 . . t}\right), p_{t}\left(v_{1 . . t} ; F_{1 . . t}\right)$
- Entangled design: consider two items sequences:

$$
\left[\begin{array}{cc}
\stackrel{\rightharpoonup}{F_{a}} & \hat{F}_{g}
\end{array}\right] \quad\left[\begin{array}{cc}
\hat{F_{d}} & F_{0}
\end{array}\right]
$$

the non-clairvoyant mechanism needs to use the same rule for item 1. The clairvoyant can use different rules depending on what comes next.

- DIC for Non-Clairvoyant: buyers don't need to know the future to check DIC. The only requirement is that distribution F_{t} will be common knowledge in step t.

Non Clairvoyant Revenue Approx

- Benchmark: the optimal dynamic mechanism that knows all the distributions $\operatorname{REv}^{*}\left(F_{1 . . T}\right)$.
- A NonClairvoyant auction is an α-approximation if for all distributions $F_{1 . . T}$ we have

$$
\operatorname{REv}\left(F_{1 . . T}\right) \geq \alpha \operatorname{REv}^{*}\left(F_{1 . . T}\right)
$$

Non Clairvoyant Revenue Approx

Theorem: Every non-clairvoyant policy is at most a 1/2approximation to the optimal clairvoyant revenue.

Theorem: For multiple buyers there is a non-clairvoyant policy that is at least $1 / 5$-approx to the opt clairvoyant.

Theorem: Can be improved to $1 / 2$ for two periods and for $1 / 3$ for one buyer and multiple periods.

Technique: Bank Account Mechanisms

Theorem: Every non-clairvoyant policy is "isomorphic" to a bank account mechanism.

- Keeps a state variable b_{t} (balance) for each buyer
- Chooses a per-period IC mechanism based on balance

$$
x_{t}\left(v_{t}, b_{t}\right), p_{t}\left(v_{t}, b_{t}\right)
$$

with the balance-independence property

$$
\mathbb{E}\left[v_{t} x_{t}\left(v_{t}, b_{t}\right)-p_{t}\left(v_{t}, b_{t}\right)\right]=\text { const } \geq 0
$$

- Updates balance:

$$
0 \leq b_{t+1} \leq b_{t}+\left[v_{t} x_{t}-p_{t}\right]
$$

Technique: Bank Account Mechanisms

Theorem: Every non-clairvoyant policy is "isomorphic" to a bank account mechanism.

Other nice properties:

- framework to design and prove lower bounds on dynamic mechanisms
- computationally efficient (multi-buyer, multi-item)
- no pre-processing required (LP or DP)

1/3-approximation policy

Keep a variable b called balance initialized to zero.
For every period t , receive an item with distribution F_{t}
Sell $1 / 3$ of the item with each of the following auctions:

- Myerson's auction for F_{t}
- Give the item for free and increment balance $b=b+v_{t}$
- $\operatorname{For} f=\min \left(b, \mathbb{E}_{F_{t}}\left[v_{t}\right]\right)$ charge f before the buyer can see the item post a price of r such that $\mathbb{E}\left(v_{t}-r\right)^{+}=f$ decrement balance $b=b-f$
Balance independence property: $\mathrm{E}[u t i l i t y]$ is balance independent.

Extension to Multiple buyers

Single buyers (1/3 approx)

1/3 item: Myerson
$1 / 3$ item: Give for free

1/3 item: Dynamic posted price

Multiple buyers ($1 / 5$ approx)

1/3 item: Myerson
$2 / 3$ item: Second price auction

2/3 item: Dynamic money burning auction [HR]

Thanks

Non Clairvoyant Mechanism Design https://ssrn.com/abstract=2873701

