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Abstract—The Generalized Second Price Auction has
been the main mechanism used by search companies
to auction positions for advertisements on search pages.
In this paper we study the social welfare of the Nash
equilibria of this game in various models. In the full
information setting, socially optimal Nash equilibria are
known to exist (i.e., the Price of Stability is 1). This paper
is the first to prove bounds on the price of anarchy, and
to give any bounds in the Bayesian setting.

Our main result is to show that the price of anarchy
is small assuming that all bidders play un-dominated
strategies. In the full information setting we prove a bound
of 1.618 for the price of anarchy for pure Nash equilibria,
and a bound of 4 for mixed Nash equilibria. We also prove
a bound of 8 for the price of anarchy in the Bayesian
setting, when valuations are drawn independently, and
the valuation is known only to the bidder and only the
distributions used are common knowledge.

Our proof exhibits a combinatorial structure of Nash
equilibria and uses this structure to bound the price of
anarchy. While establishing the structure is simple in the
case of pure and mixed Nash equilibria, the extension to
the Bayesian setting requires the use of novel combinatorial
techniques that can be of independent interest.

Keywords-game theory; price of anarchy; GSP; Spon-
sored Search Auction

I. INTRODUCTION

Search engines and other online information sources
use Sponsored Search Auctions, or AdWord auctions, to
monetize their services via advertisements sold. These
auctions allocate advertisement slots to companies, and
companies are charged per click, that is, they are
charged a fee for any user that clicks on the link
associated with the advertisement. There has been much
work in understanding various aspect of the auctions
used in this context, see the survey of Lahaie et al. [8].

Here we consider Sponsored Search Auctions in a
game theoretic context: consider the game played by
advertisers in bidding for an advertisement slot. For
each search word, advertisers can bid for showing their
ad next to the search results. There are multiple slots
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for advertisements and slots higher on the page are
more valuable (clicked on by more users). The bids
are used to determine both the assignment of bidders
to slots, and the fees charged. In the simplest model,
the bidders are assigned to slots in order of bids, and
the fee for each click is the bid occupying the next
slot. This auction is called the Generalized Second Price
Auction (GSP). More generally, positions and payments
in the Generalized Second Price Auction depend also on
the click-through rates associated with the bidders, the
probability that the advertisement will get clicked on by
the users if assigned to the best slot. This is the version
of the Generalized Second Price Auction mechanism
adopted by all search companies. Here we will focus on
the basic model for simplicity of presentation, but our
results extend to the standard model of separable click-
though rates (see the full version of our paper [11]).

The Generalized Second Price Auction is a sim-
ple and natural generalization of the Vickrey auction
[15] for a single slot (or single item). The Vickrey
auction [15] for a single item, and its generalization,
the Vickrey-Clarke-Groves Mechanism (VCG) [2], [5],
make truthful behavior (when the advertisers reveal
their true valuation) a dominant strategy, and make the
resulting outcome maximize the social welfare. How-
ever, the Generalized Second Price Auction is neither
truthful nor maximizes social welfare. In this paper we
will consider the social welfare of the GSP auction
outcomes. Our goal is to show that the intuition based
on the similarity of GSP to the Vickrey auction is not
so far from truth: we prove that the social welfare is
within a small constant factor of the optimal in any Nash
equilibrium under the mild assumption that the players
use un-dominated strategies.

We consider both full information games when player
valuations are fixed, and also consider the Bayesian set-
ting when the values are independent random variables,
the valuation is known only to the bidder, and only the
distributions used are public knowledge.

In the case of the full information game Edelman
et al. [3] and Varian [14] show that there exists
Nash equilibria that are socially optimal (for both our



simple model and the case of separable click-through
rates). But there are Nash equilibria where the social
welfare is arbitrarily smaller than the optimum even
for the special case of the single item Vickrey auction.
However these equilibria are unnatural, as some bid
exceeds the players valuations, and hence the player
takes unnecessary risk. We show that bidding above the
valuation is dominated strategy, and define conservative
bidders as bidders who won’t bid above their valuations.
Our results assume that players are conservative.

Our results: The main results of this paper are Price
of anarchy bounds for pure, mixed and Bayesian Nash
equilibria for the GSP game assuming conservative
bidders. To motivate the conservative assumption, we
observe that bidding above the player’s valuation is
dominated strategy in all settings.

For each setting, we exhibit a combinatorial struc-
ture of the Nash equilibria that can be of independent
interest. To state this structure we need the following
notation. For an advertiser k let vk be the value of
advertiser k for a click (a random variable in the
Bayesian case). For a slot i, let π(i) be the advertiser
assigned to slot i in an equilibrium (a random variable,
in the case of mixed Nash, or in the Bayesian setting).

• For the case of full information game, the social
welfare in a pure Nash equilibrium with conserva-
tive bidders is at most a factor of 1.618 above the
optimum. We achieve this bound via a structural
characterization of such equilibria: for any two
slots i and j, we show that in a Nash equilibrium
with conservative bidders, we must have that

αj
αi

+
vπ(i)

vπ(j)
≥ 1.

It is not hard to see that this structure implies
that the assignment cannot be too far from the
optimal: if two advertisers are assigned to positions
not in their order of values, then either (i) the two
advertisers have similar values for a click; or (ii)
the click-through rates of the two slots are not very
different, and hence in either case their relative
order doesn’t affect the social welfare very much.

• We also bound the quality of mixed Nash equilibria
as a warm-up for the Bayesian setting. For a
mixed Nash equilibrium π(i) is a random variable,
indicating the bidder assigned to slot i, and simi-
larly let the random variable σ(i) denote the slot
assigned to bidder i. For notational convenience
we number players and slots in order of decreasing
valuation and click-through rates respectively. By
this notation, bidder i should be assigned to slot
i in the optimum. The inequality for pure Nash
equilibria is derived by thinking about a pair of
bidders that are assigned to slots in reverse order.

Such pairs seem hard to define in the mixed case.
Instead, we will consider bidder i and his optimal
slot i, and get the following condition for mixed
Nash equilibria

Eασ(i)
αi

+
Evπ(i)
vi

≥ 1

2
,

We use this inequality to show that the social
welfare of a mixed Nash equilibrium is at least
one-fourth of the optimal social welfare.

• We prove a bound of 8 on the price of anarchy
for the Bayesian setting, where the valuations vk
are drawn independently at random. We do this
via a slightly more complicated structural property,
showing that an expression similar to the one used
in the case of mixed Nash must be at least 1/4th in
expectation. However, establishing this inequality
in the Bayesian setting in much harder. In the
context of pure and mixed Nash, the inequality
follows from the Nash property by considering a
single deviation by a player, e.g., a player who
would be assigned to slot i in the optimum, may
want to try to bid high enough to take over slot
i. In contrast, in the Bayesian case we obtain our
structural result by considering many different bids,
and combine the inequalities established by these
bids to show the structure.
In the process we use a number of new techniques
of independent interest. The bids we use for player
i are twice the expected value of the minimal bid
that takes slot k conditioned both on the value vi
and the fact that the optimal position for bidder
i is k. We show via an interesting combinatorial
argument using the max-flow min-cut theorem, that
these bids decrease with k. Then we use a novel
averaging technique (using linear programming) to
combine the resulting inequalities.

Our results differ significantly from the existing work
on the price of anarchy in a number of ways. Many of
the known results can be summarized via a smoothness
argument as observed by Roughgarden [12]. In contrast,
it is easy to see that the GSP game is not smooth in the
sense of [12] (see the full version of this paper [11] for
an example). Second, most known price of anarchy re-
sults are for the case of full information games. The full
information setting makes the strong assumption that
all advertisers are aware of the valuations of all other
players. In contrast, the Bayesian setting requires only
the much weaker assumption that valuations are drawn
from independent distributions, and these distributions
are known to all players. The Bayesian game is a better
model for real AdWord Auctions, since players submit
a single bid that will be used in many auctions with
different competitors, so players are, in fact, optimizing
for a distribution of other players.



Related work: Sponsored search has been an active area
of research in the last several years. Mehta et al. [10]
considered AdWord auctions in the algorithmic context.
Since the original models, there has been much work in
the area, see the survey of Lahaie et al. [8]. Here we
use the game theoretic model of the AdWord auctions
of Edelman et al. [3] and Varian [14].

In the full information setting Edelman et al. [3] and
Varian [14] show that the price of Stability for this game
is l. More precisely, they consider a restricted class of
Nash equilibria called Envy-free equilibria or Symmet-
ric Nash Equilibria, and show that such equilibria exists,
and all such equilibria are socially optimal. In this class
of equilibria, an advertiser wouldn’t be better off after
switching his bids with the advertiser just above him.
Note that this is a stronger requirement than Nash, as an
advertiser cannot unilaterally switch to a position with
higher click-through rate by simply increasing his bid.
Edelman et al. [3] claim that if the bids eventually con-
verge, they will converge to an envy-free equilibrium;
otherwise some advertiser could increase his bid making
the slot just above more expensive and therefore making
the advertiser occupying it underbid him. They do not
provide a formal game theoretical model that selects
such equilibria.

Gomes and Sweeney [4] study the Generalized Sec-
ond Price Auction in the Bayesian context. They show
that, unlike the full information case, there may not exist
symmetric or socially optimal equilibria in this model,
and obtain sufficient conditions on click-through rates
that guarantee the existence of a symmetric and efficient
equilibrium.

Lahaie [7] considers the problem of quantifying the
social efficiency of an equilibrium. He makes the strong
assumption that the click-through rates αi decay expo-
nentially along the slots with a factor of 1

δ , and proves a
price of anarchy bound of min{ 1

δ , 1−
1
δ }. We make no

assumptions on the click-through rates. Thompson and
Leyton-Brown [13] study the efficiency loss of equilibria
empirically in various models.

We assume that bidders are conservative, in the sense
that no bidder is bidding above their own valuation.
We can justify this assumption by noting that bidding
above the valuation is a dominated strategy. Lucier and
Borodin [9] and Christodoulou at al. [1] also use the
conservative assumption to establish price-of-anarchy
results in the context of combinatorial auctions.

The paper by Lucier and Borodin [9] on greedy
auctions is also closely related to our work. They
analyze the Price of Anarchy of the auction game
induced by a Greedy Algorithm. They consider a general
combinatorial auction setting, where a greedy algorithm
is used for determining the allocation with payments
computed using the critical price. They show via a type

of smoothness argument (see [12]) that if the greedy
algorithm is a c-approximation algorithm, then the Price
of Anarchy of the resulting mechanism is c + 1 - for
pure and mixed Nash and for Bayes-Nash equilibria.
The Generalized Second Price mechanism is a type of
greedy mechanism, but is not a combinatorial auction,
and hence it does not fit the framework of Lucier and
Borodin. The key to proving the c+ 1 bound of Lucier
and Borodin [9] is to consider possible deviating bids,
such as a single minded bid for the slot in the optimal
solution, or modifying a bid by changing it only on a
single slot (the one allocated in the optimal solution).
The combinatorial auction framework allows such com-
plex bids; in contrast, the bids in GSP have limited
expressivity, since a bid is a single number, and hence
bidders cannot make single-minded declarations for a
certain slot, or modify their bid only on one of the slots.
Like the GSP game, many natural bidding languages
have limited expressivity, since typically allowing ar-
bitrary complex bids makes the optimization problem
hard. The limited expressivity of the bidding language
can increase the set of Nash equilibria (since there are
fewer deviating bids to consider), so it is important to
understand if such natural bidding languages result in
greatly increased price of anarchy.

II. PRELIMINARIES

We consider an auction with n advertisers and n slots
(if there are fewer slots, add virtual slots with click-
through rate zero). We model this auction as a game
with n players, where each advertiser is one player. In
the simple model the type of the advertisers is given by
their valuation vi, their value for one click. The strategy
for each advertiser is a bid bi ∈ [0,∞) which expresses
the maximum he or she is willing to pay for a click.

The auction decides where to allocate each advertiser
based on the bids. In the simple model, being assigned
to the k-th slot results in αk clicks and αk is a monotone
non-increasing sequence, i.e., α1 ≥ α2 ≥ . . . ≥ αn. The
simple game proceeds as follows:

1) each advertiser submits a bid bi ≥ 0, which is the
maximum he is willing to pay for a click

2) the advertisers are sorted by their bids (ties are
broken arbitrarily). Call π(k) the advertiser with
the k-th highest bid

3) advertiser π(k) is placed on slot k and therefore
received αk clicks

4) for each click, advertiser k pays bπ(k+1), which
is the next highest bid

The vector π is a permutation that indicates to which
slot each player is assigned - it is determined by the
set of bids (up to ties). We define the utility of a user
i when occupying slot j as given by ui(b) = αj(vi −
bπ(j+1)). We define the social welfare of this game as



the total value that the bidders and the auctioneer get
from playing it, which is:

∑
j αjvπ(j). The goal of this

paper is to bound the social welfare of the equilibria
relative to the optimum. This measure is called the Price
of Anarchy. We analyze the Price of Anarchy in three
different settings of increasing complexity.

In the full version of our paper [11] we extend
the results to the more general model of separable
click-through rates, where the probability of clicking
on an advertisement i displayed in slot j is αjγi. Now
advertisers are assigned in order of the products biγi
(the expected total willingness of the bidder to pay:
γi clicks at the rate of bi), and the fee for a click
is the critical value of the bid needed to keep the
advertiser in his current slot. We get the simple model
as a special case by assuming that γi = 1 for all bidders.

Pure Nash equilibrium: The valuation of each player
is a fixed value vi. We number the bidders (without loss
of generality) so that v1 ≥ v2 ≥ . . . ≥ vn. Each player
chooses a pure strategy, i.e., a deterministic bid bi. The
bids b = (b1, . . . , bn) is a Pure Nash Equilibrium if no
bidder can change his bid to increase his utility, i.e.:

ui(bi, b−i) ≥ ui(b
′
i, b−i),∀b′i ∈ [0,∞)

where b−i denotes the vector of bids for bidders j ̸= i.
To gain some intuition, suppose advertiser i is cur-

rently bidding bi and occupying slot j. Changing his bid
to something between bπ(j−1) and bπ(j+1) won’t change
the permutation π nor his payment. So, he could try to
increase his utility by doing one of two things:

• increasing his bid to get a slot with a better click-
through rate. If he wants to get a slot k < j he
needs to overbid advertiser π(k), say by bidding
bπ(k) + ϵ. This way he gets slot k for the price
bπ(k) per click, getting utility αk(vi − bπ(k)).

• decreasing his bid to get a worse but cheaper slot.
If he wants to get slot k > j he needs to bid below
advertiser π(k). This way he would get slot k for
the price bπ(k+1) per click, getting utility αk(vi −
bπ(k+1)).

Note the asymmetry between the two options. The
symmetric (or envy free) equilibria studied by Edelman
et al. [3] and Varian [14] satisfy the stronger symmetric
condition that αj(vi − bπ(j+1)) ≥ αk(vi − bπ(k+1)) for
all k. Edelman et al. [3] and Varian [14] show that
symmetric equilibria exist and have optimal welfare,
hence the Price of Stability for this game is 1.

We are interested in bounding the Pure Price of
Anarchy, which is the ratio

∑
j αjvj/

∑
j αjvπ(j),

between the social welfare in the optimum and in the
worst Nash equilibrium.

Mixed Nash equilibrium: The valuations vi are still
fixed and we can assume (without loss of generality)
that v1 ≥ . . . ≥ vn, but players pick a distribution over
strategies. In a Mixed Nash equilibrium, each player
chooses a random variable bi for his bid such that the
chosen random variable maximizes the expected utility
for each player. In other words:

E[ui(bi, b−i)] ≥ E[ui(b′i, b−i)],∀b′i,∀i

where expectation is with respect to the distribution
of bids. Now, the assignment π is a random variable
determined by b and therefore the social welfare is
also a random variable (even though the optimal
welfare is fixed). The Price of Anarchy is the ratio:∑
j αjvj/E[

∑
j αjvπ(j)].

Bayes-Nash equilibrium: The partial information set-
ting, using the framework of Harsanyi [6], provides a
more realistic setting than the full information game. In
this model the valuations vi are drawn from indepen-
dent distributions. The distributions used are common
knowledge, but only player i is aware of his valuation
vi. (No assumptions are made about the distributions
beyond independence). Now the strategy of a player i
is to choose a bid (possibly at random) based on his
own valuation vi. Therefore, the strategy of player i is a
bidding function bi(vi) that associates for each valuation
vi a distribution of bids. A set of bidding functions is a
Bayes-Nash equilibrium if for all i, vi, b′i(vi):

E[ui(bi(vi), b−i(v−i))|vi] ≥ E[ui(b′i(vi), b−i(v−i)|vi]

where expectations are taken over values and random-
ness used by players.

The Nash assignment π is a random variable, since it
is dependent on the bids, which are random. The optimal
allocation is also a random variable, let ν(k) be the
slot occupied by player k in the optimal assignment.
Therefore, ν is a random variable such that vi > vj ⇒
ν(i) < ν(j). The optimal social welfare is therefore∑
j αν(j)vj . In this setting the quantity we want to

bound is the Bayes-Nash price of Anarchy, which we
define as the ratio: E[

∑
j αν(j)vj ]/E[

∑
j αjvπ(j)].

A. Equilibria with Low Social Welfare and Conservative
Bidders

Even for two slots the gap between the best and
the worse Nash equilibrium can be arbitrarily large.
For example, consider two slots with click-through-rates
α1 = 1 and α2 = 0 and two advertisers with valuations
v1 = 1 and v2 = 0. It is easy to check that the bids
b1 = 0 and b2 = 1 are a Nash equilibrium where
advertiser 1 gets the second slot and advertiser 2 gets
the first slot. The social welfare in this equilibrium is 0
while the optimum is 1. The price of anarchy is therefore
unbounded.



Notice, however, that this Nash equilibrium seems
very artificial: the special case of GSP with α1 = 1 and
α2 = 0 is the Vickrey auction, where truthful bidding
of bi = vi is a dominant strategy, yet in the equilibrium
above the bids are not truthful. Advertiser 2 above is
exposed to the risk of negative utility with no benefit: if
advertiser 1 (or a new advertiser) adds a bid somewhere
in the interval (0, 1) this imposes a negative utility on
advertiser 2.

More generally, for any bidder i, bidding above the
valuation vi (with any probability) is dominated by
bidding vi in any of the above models. We state the
lemma here in the more general model of Bayesian
games.

Lemma II.1 Given a bidding function bi(vi), a strategy
in which P (bi(vi) > vi) > 0 for some vi is dominated
by playing b′i(vi) = min{vi, bi(vi)}.

We say that a player is conservative if he doesn’t
overbid, i.e., P (bi(vi) ≤ vi) = 1. We assume through-
out the paper that players are conservative.

III. PURE NASH EQUILIBRIUM

Theorem III.1 For 2 slots, if all advertisers are con-
servative, then the price of anarchy is exactly 1.25.

Proof: To see that the price of anarchy is achievable
consider two slots with α1 = 1 and α2 = 1/2, and
two bidders with valuations v1 = 1 and v2 = 1/2, and
note that the bids b1 = 0 and b2 = 1/2 form a Nash
equilibrium. It is not hard to see that this is the worst
case. See the full version [11] for more details.

A. Weakly Feasible Assignments

Next we show that equilibria with conservative bid-
ders satisfy the property mentioned in the introduction.
We will call the assignments satisfying this property
weakly feasible. In the next subsection we analyze the
welfare properties of weakly feasible assignments.

Lemma III.2 For any valuation v, click-through rates
α and a Nash permutation π we have

αj
αi

+
vπ(i)

vπ(j)
≥ 1; (1)

in particular, αj

αi
≥ 1

2 or vπ(i)

vπ(j)
≥ 1

2 .

Proof: If j ≤ i the inequality is obviously true.
Otherwise consider the bidder π(j) in slot j. Since it is
a Nash equilibrium, the bidder in slot j is happy with
his outcome and doesn’t want to increase his bid to
take slot i, so: αj(vπ(j) − bπ(j+1)) ≥ αi(vπ(j) − bπ(i))
since bπ(j+1) ≥ 0 and bπ(i) ≤ vπ(i) then: αjvπ(j) ≥
αi(vπ(j) − vπ(i))

Inspired by the last lemma, given parameters α, v
we say that permutation π is weakly feasible if in-
equality (1) holds for each i, j. The main result of
this section follow from analyzing the price of anarchy
ratio

∑
j αjvj/

∑
j αjvπ(j) over all weakly feasible

permutations π.

B. Price of Anarchy Bound

Here we present the bound on the price of anarchy
for weakly feasible permutations, and hence for GSP for
conservative bidders.

Theorem III.3 For conservative bidders, the price of
anarchy for pure Nash equilibria of GSP is bounded by
the golden ratio 1+

√
5

2 ≈ 1.618.

Proof: We will prove the bound by induction for
all weakly feasible permutations. As a warm-up we will
prove that the price of anarchy is bounded by 2, since
the proof is easier and captures the main ideas.

We use induction on n. The case n = 1 is obvious.
Consider parameters v, α and a weakly feasible permu-
tation π. Let i = π−1(1) be the slot occupied by the
advertiser with maximum valuation and j = π(1) be
the advertiser occupying the first slot. If i = j = 1 then
we can apply the induction hypothesis right away. If not,
inequality (1) tells us that αi

α1
≥ 1

2 or vj
v1

≥ 1
2 . Suppose

αi

α1
≥ 1

2 and consider an input with slot i and advertiser
1 deleted. The permutation π restricted to these n − 1
advertisers and n − 1 slots is still weakly feasible, so
by the induction hypothesis:∑
k ̸=i

αkvπ(k)

≥ 1

2
(α1v2 + ...+ αi−1vi + αi+1vi+1 + ...+ αnvn)

≥ 1

2
(α2v2 + ...+ αivi + αi+1vi+1 + ...+ αnvn)

and therefore,∑
k

αkvπ(k) = αiv1+
∑
k ̸=i

αkvπ(k) ≥
1

2
α1v1+

1

2

∑
k>1

αkvk

If vj
v1

≥ 1
2 we just do the same but deleting slot 1 and

advertiser j from the input. This proves the bound of 2.
Next we sketch the proof of the improved bound.

See the full version [11] for more details. As before,
we prove the conclusion for all weakly feasible per-
mutations. Let rk be the worst price of anarchy for
feasible permutations in a k slots auction. By the proof
of Theorem III.1 we know that r2 = 1.25. We will
generate a recursion to bound rk and then prove that
the bound converges to the desired bound of 1+

√
5

2 .
Consider parameter α, v, a weakly feasible permuta-

tion π and let’s assume i = π−1(1) and j = π(1) . If
i = j = 1, the price of anarchy is bounded by rn−1. If



not, assume without loss of generality that i ≤ j (since
inequality (1) is symmetric in α and v). Let β = α1

αi

and γ = v1
vj

. We know that 1
β + 1

γ ≥ 1. Following the
outline of the previous proof we have:∑

k

αkvπ(k) = αiv1 +
∑
k ̸=i

αkvπ(k)

The first term is bounded by 1
βα1v1. We bound the

remaining terms as∑
k ̸=i

αkvπ(k) ≥
1

rn−1

(
i∑

k=2

αk−1vk +
n∑

k=i+1

αkvk

)

=
1

rn−1

[
i∑

k=2

(αk−1 − αk)vk +
∑
k>1

αkvk

]

≥ 1

rn−1
(α1 − αi)vi +

1

rn−1

∑
k>1

αkvk

By the assumption that i ≤ j we have vi ≥ vj =
1
γ v1 ≥(

1− 1
β

)
v1, and we get

∑
k

αkvπ(k) ≥

[
1

β
+

1

rn−1

(
1− 1

β

)2
]
α1v1+

+
1

rn−1

∑
k>1

αkvk

Symmetrically, we can remove slot 1 and advertiser
j in the inductive step and get a similar equation. The
bound for rn is the maximum of the two. Finally, to
get bound for rn valid for all β we need to use the
value of β that minimizes the resulting bound. We get
the following recursion for rn

rn =


(
1− rn−1

4

)−1

, rn−1 <
4

3(
rn−1 −

√
r2n−1 − rn−1

)−1

, rn−1 ≥ 4

3

To show that the sequence is bounded by φ = 1+
√
5

2 ,
note that if rn−1 ≤ φ then rn ≤ φ.

Remark: Proving matching upper and lower bounds
for this problem remains an interesting open problem.
The worse example of the Price of Anarchy the authors
are aware of (in any of the models) is 1.259 (and it is
for a pure Nash equilibrium for 3 players).

IV. MIXED NASH EQUILIBRIUM

As before, we assume that players are numbered such
that v1 ≥ . . . ≥ vn and slots with click-through rates
α1 ≥ . . . ≥ αn. In a mixed Nash equilibrium the
strategy of player i is a probability distribution on [0, vi]
represented by a random variable bi, and we assume that
bidders are conservative: P (bi ≤ vi) = 1.

Now the allocation, represented by the permutation π,
is also a random variable. For notational convenience,
let σ = π−1. We begin by proving a bound similar
to Lemma III.2 for mixed Nash and then using that to
bound the price of anarchy. Note that by our notational
assumption the position of bidder i in the optimal
allocation is position i. The new inequality is different
as it involves a bidder i and its location i in the optimal
allocation, rather than two bidders that are allocated to
“wrong relative positions”.

Lemma IV.1 If the random vector b is a mixed Nash
equilibrium for GSP then for each player i:

Eασ(i)
αi

+
Evπ(i)
vi

≥ 1

2
(2)

Proof: We will consider whether player i benefits
by deviating to the deterministic b′i = min(vi, 2Ebπ(i)).

We claim that with probability at least 1
2 , this bid

gets one of the slots of {1, . . . , i}. If b′i = vi then
this happens for sure, as our conservative assumption
guarantees that only the previous i − 1 players can
bid more. If b′i = 2Ebπ(i) then by Markov’s inequality
P (bπ(i) ≥ b′i) ≤

Ebπ(i)

b′i
= 1

2 . Therefore we have that

Eασ(i)vi ≥ Eui(b) ≥ Eui(b′i, b−i) ≥
1

2
αi(vi − b′i) ≥

≥ 1

2
αi(vi − 2Ebπ(i)) ≥

1

2
αi(vi − 2Evπ(i))

Now it is just a matter of rearranging the expression.

Theorem IV.2 The Price of Anarchy for the mixed
Nash equilibria of GSP with conservative bidders is at
most 4.

Proof: The proof is a simple application of Lemma
IV.1 and some algebraic manipulation:

E[
∑
i

ui(b)] =
1

2

[
E
∑
i

ασ(i)vi + E
∑
i

αivπ(i)

]
=

=
1

2

∑
i

αivi

(Eασ(i)
αi

+
Evπ(i)
vi

)
≥ 1

4

∑
i

αivi

V. BAYES-NASH EQUILIBRIUM

Recall that in the Bayesian setting, the values vi
are independent random variables, their distributions are
common knowledge, but the value vi is only known to
bidder i. A strategy for a player i is a bidding function
bi(vi) (or a probability distribution of such functions)
where bi(vi) is the player’s bid when his value is vi. As
before, we will assume that P (bi(vi) ≤ vi) = 1, since
overbidding is dominated strategy.



We will use π and σ = π−1 to denote the permutation
representing the allocation, and we will use ν to denote
the random permutation (defined by v) such that player i
occupies slot ν(i) in the optimal solution. The expected
social welfare is E[

∑
i αivπ(i)] = E[

∑
i ασ(i)vi] and the

social optimum is given by E[
∑
i αν(i)vi]. The goal of

this section is to bound the price of anarchy, the ratio
of these two expectations.

Theorem V.1 If a set of functions b1, . . . , bn are a
Bayes-Nash equilibrium in conservative strategies then:

E

[∑
i

αivπ(i)

]
≥ 1

8
E

[∑
i

αν(i)vi

]
that is, the Bayes-Nash Price of Anarchy in conservative
strategies for GSP is bounded by 8.

The proof of the theorem is based on a structural
characterization analogous to the one used for Pure
and Mixed Nash equilibria in previous sections, but
much harder to prove. The structural characterization
for Mixed Nash (Lemma IV.1) can be written as
viEασ(i) + αiEvπ(i) ≥ 1

2αivi. The Bayesian structural
characterization is obtained by taking expectation of
this inequality (and losing a factor of 2). In the full
information model, bidder i is assigned to slot i in the
optimum by notation, and the inequality above uses
this notational convenience. In the Bayesian setting,
the optimal slot for a bidder is a random variable, so
we cannot deterministically order bidders by valuation;
instead we need to use a random variable ν(i) to denote
the slot bidder i is assigned to in the optimum.

Lemma V.2 If {bi(·)}i is a Bayes-Nash equilibrium of
the GSP then for all i and for all vi:

viE[ασ(i)|vi] + E[αν(i)vπ(ν(i))|vi] ≥
1

4
viE[αν(i)|vi]

The price of anarchy bound follows from the lemma.

Proof of Theorem V.1 :

SW =
1

2
E
∑
i

(αivπ(i) + ασ(i)vi) =

=
1

2
E
∑
i

(αν(i)vπ(ν(i)) + ασ(i)vi) =

=
1

2
E

[∑
i

E[αν(i)vπ(ν(i))|vi] + viE[ασ(i)|vi]

]
≥

≥ 1

8
E

[∑
i

viαν(i)

]

The hard part of the proof is proving Lemma V.2.
The main difficulty in the Bayesian setting is that the

inequality is not established by a single deviating bid.
The structural inequalities of Lemmas III.2 and IV.1 in
the full information setting were obtained by consider-
ing a single deviation, e.g., for mixed Nash equilibria
we considered a single bid just above 2Ebπ(ν(i)), as by
Markov’s inequality this value is above bπ(ν(i)) with
probability at least 1/2. In contrast, in the Bayesian
setting, we obtain our structural result by considering
deviations to different bids and then combining them
using a novel averaging argument.

To define the deviating bids, consider the following
notation: let πi(k) be the bidder occupying slot k in
the case i didn’t participate in the auction, i.e., πi(k) =
π(k) if σ(i) > σ(k) and πi(k) = π(k + 1) otherwise.
Note the following property of πi(k)

Lemma V.3 A deviating bid B by player i gets a slot
k or above if and only if B > bπi(k).

For mixed equilibria in the full information setting,
we considered the bid 2Ebπ(ν(i)). To extend this to the
Bayesian setting, we will consider a sequence of bids,
conditioned on the value of ν(i) defined as

Bk = min{vi, 2E[bπi(k)|vi; ν(i) = k]}.

Notice that Bk is defined as a conditional expectation,
so it is a function of vi, and not a constant. We will
drop the dependence on vi from the notation as we are
focusing on a single value vi throughout the proof.

The proof of Lemma V.2, depends on two combi-
natorial results. The first is a structural property: we
claim that the bids Bk are monotone in k for any fixed
value of vi. Showing this will allow us to argue that bid
Bk not only has a good chance of taking slot k when
ν(i) = k, but also has a good chance of taking any other
slot k′ > k when ν(i) = k′, since Bk ≥ Bk′ .

Lemma V.4 The expectation E[bπiν(i)|vi, ν(i) = k] is
non-increasing in k for any fixed value vi.

We will prove the lemma above using flows and the
max-flow min-cut theorem. The value Bk is defined as a
conditional expectation assuming ν(i) = k, while Bk+1

is defined as a conditional expectation conditioning on
a disjoint part of the probability space: assuming ν(i) =
k+1. To relate the two expectations we define a flow of
probabilities from the probability space where ν(i) = k
to the space where ν(i) = k+1 that transfers the mass
of probability with the property that the value bπi(ν(i))

is non-increasing along the flow lines. This will prove
that Bk, the expectation of bπi(ν(i)) on the source side,
is no bigger than Bk+1, the expectation of the same
value on the sink side.

We combine the inequalities obtained by considering
the different bids Bk using a novel ”dual averaging



argument”, finding an average that will simultaneously
guarantee that one average is not too low, and a different
average is not to high. We combine the bids Bk via a
probability distribution x (bidding Bk with probability
xk). The two inequalities of the lemma will guarantee
that the resulting randomized bid, on one hand, gets a
high enough number of clicks, and on the other hand,
the resulting payment is not too large.

Lemma V.5 Given any nonnegative values γk, Bk there
is a probability distribution xk ≥ 0,

∑
k xk = 1 such

that ∑
k

xk

n∑
j=k

γj ≥
1

2

n∑
j=1

γj

∑
k

xkBk

n∑
j=k

γj ≤
n∑
j=1

γjBj

Before we prove these key lemmas, we show how to
use them for proving the main Lemma V.2:

Proof of Lemma V.2 : As outlined above, we will
consider n deviations for a player i at bids Bk for all
possible slots k. Since the bidding functions are a Nash
equilibrium, player i can’t benefit from changing his
strategy, and so each deviation will give us an inequality
on the utility of player i. We will use Lemma V.5 to
average the inequalities and get the claimed inequality.

Suppose bidder i deviates to Bk =
min{vi, 2E[bπi(k)|vi; ν(i) = k]}. Let α′

k be the
random variable that means the click-through rate of
the slot he occupies by bidding Bk. First we estimate
the probability that by bidding Bk the player gets the
slot k or better when ν(i) = k. In the case Bk = vi this
is trivially guaranteed, since only ν(i)− 1 players have
values above vi and only these players can bid above
vi. If Bk = 2E[bπik|vi; ν(i) = k], we use Lemma V.3,
and Markov’s inequality to get:

P (α′
k ≥ αk|vi, ν(i) = k) =

= P (Bk ≥ bπi(k)|vi, ν(i) = k) ≥ 1

2
.

Let pj = P (ν(i) = j|vi). Recall that by Lemma
V.4 we have that B1 ≥ B2 ≥ . . . ≥ Bn, and
hence the probability of bid Bk taking a slot j or
better when ν(i) = j is also at least 1/2 whenever
j ≥ k. The expected value of bidding Bk is at least
E[α′

k(vi − Bk)|vi], and the value for player i in the
current solution is at most viE[ασ(i)|vi]. This leads to
the following inequality.

viE[ασ(i)|vi] ≥ E[α′
k(vi −Bk)|vi] =

=
∑
j

pjE[α′
k(vi −Bk)|vi, ν(i) = j] ≥

≥
∑
j≥k

1

2
pjαj(vi −Bk).

Now we use the Lemma V.5 applied with Bk and
γk = pkαk. We can interpret xk from the lemma
as probabilities, and consider the deviating strategy of
bidding Bk with probability xk.

Combining the above inequalities with the coeffi-
cients xk from the Lemma, we get that

viE[ασ(i)|vi] ≥
∑
k

xk
∑
j≥k

1

2
pjαj(vi −Bk) ≥

≥ 1

4
vi
∑
j

αjpj −
1

2

∑
j

pjαjBj ≥

≥ 1

4
viE[αν(i)|vi]− E[αν(i)bπi(ν(i))|vi].

To get the claimed inequality, note that bπi(k) ≤
bπ(k) ≤ vπ(k).

A. Proving that bids Bk are non-increasing

We will prove Lemma V.4 in several steps. First we
prove bounds assuming all but a single player has a
deterministic value, and we take expectations to get a
conditional version. We define a probability flow from
the probability space where ν(i) = k to the space where
ν(i) = k + 1 that transfers the mass of probability
so that only a single value is changing along the flow
edges, and hence by the first claim the value bπi(ν(i)) is
non-increasing along the flow lines. In transferring the
probability mass we take advantage of the fact that the
valuations are drawn from independent distributions.

Proof of Lemma V.4 : We want to prove that

E[bπi(k)|vi, ν(i) = k] ≥ E[bπi(k+1)|vi, ν(i) = k + 1].

The value vi is in position k in the optimum if exactly
n − k values are below vi. Consider such a set S of
agents, i /∈ S, and the corresponding event:

AS = {vj ≤ vi;∀j ∈ S, vj > vi;∀j /∈ S}.

The event ν(i) = k can now be stated as ∪|S|=n−kAS ,
and so what we are trying to prove is:

E[bπi(k)|vi,∪|S|=n−kAS ] ≥ E[bπi(k+1)|vi,∪|S′|=n−k−1AS′ ]

Consider a pair of sets S′ ⊆ S, i.e., S = S′ ∪ {t} for
some agent t ̸= i. The first claim is the following.

Claim V.6 For sets S′ and S = S′ ∪ {t} for t ̸= i,

E[bπi(k)|vi, AS ] ≥ E[bπi(k+1)|vi, AS′ ]

To see this, notice that
E[bπi(k)|vi, AS , {vj}j ̸=i,t] ≥ E[bπi(k+1)|vi, AS′ , {vj}j ̸=i,t]

The conditioning on the two sides differs only by the
value of bidder t. In identical conditioning and identical
bids, the bid of position k is clearly higher than the bid



of position k + 1, and by letting one bidder (bidder t)
change, we can’t violate the above inequality. Taking
the expectation over the valuations {vj}j ̸=i,t and the
bids used (if the strategies are randomized) we get the
inequality of Claim V.6.

To finish the proof of Lemma V.4, we would like to
add the inequalities for different set pairs (S, S′). The
next combinatorial lemma states that if the values vi
are drawn from independent distributions, then there is
a “probability flow” λS,S′ that transfers the probability
mass from ∪|S|=n−kAS to ∪|S′|=n−k−1AS′ along the
pairs S′ ⊆ S. More formally, Lemma V.7 will show that
there are coefficients λS,S′ ≥ 0 for S′ ⊆ S such that∑

S

λS,S′ = P (AS′ |vi,∪|T ′|=n−k−1AT ′)

∑
S′

λS,S′ = P (AS |vi,∪|T |=n−kAT )

Taking linear combination of the inequalities (V.6) for
set pair (S, S′) with coefficients λS,S′ gives the claimed
bound.

Lemma V.7 If valuations are drawn from independent
distributions, then there exists a probability flow λS,S′ ≥
0 for set pairs S′ ⊆ S with |S′| = n − k − 1 and
|S| = n− k such that the equations above hold.

Proof: We will use the max-flow min-cut theorem
to prove that the λS,S′ values exist. We characterize the
probabilities P (AS |vi,∪|T |=n−kAT ) using the indepen-
dence assumption. Let qj = P (vj ≥ vi), then we can
write

P (AS |vi,∪|T |=n−kAT ) =

∏
j∈S qj

∏
j /∈S+i(1− qj)∑

|T |=n−k

∏
j∈T qj

∏
j /∈T+i(1− qj)

.

If we define ϕj =
qj

1−qj and ϕ(S) =
∏
j∈S ϕj then we

can rewrite the above equation as

P (AS |vi,∪|T |=n−kAT ) =
ϕ(S)∑

|T |=n−k ϕ(T )
.

The existence of the λS,S′ values is equivalent to the
existence a flow of value 1 in the following network:
consider a bipartite graph where the left nodes are
sources corresponding to sets S′ with |S′| = n− k − 1

with supply ϕ(S′)∑
T ′ ϕ(T ′) and the right nodes are sinks

corresponding to sets S of |S| = n − k with demand
ϕ(S)∑
T ϕ(T ) . We add an edge (S′, S) with capacity ∞ if

S′ ⊆ S. We need to prove that the max-flow in this
graph has flow value 1 (and then the flow values define
λS′,S). We use the max-flow/min-cut theorem (in this
case, a weighted version of Hall’s Theorem): there is a
flow of value 1 if and only if for each collection of sets
A′

1, . . . , A
′
p of size n− k− 1, the total supply, the flow

that needs to leave the set, is at most the demand that
is available at the neighbors of the set:

p∑
i=1

ϕ(A′
i)∑

S′ ϕ(S′)
≤

∑
A′

i⊆A,|A|=n−k

ϕ(A)∑
S ϕ(S)

which can be rewritten as∑
S

ϕ(S) ·
∑
i

ϕ(A′
i) ≤

∑
A′

i⊆A,|A|=n−k

ϕ(A) ·
∑
S′

ϕ(S′)

Notice that both sides have sums of products of 2(n−
k)− 1 terms of type ϕj . If we can prove that all terms
in the LHS appear in the RHS with at least the same
multiplicity we are done. We prove this based on a
combinatorial construction.

The left-hand side consists of products of ϕ values for
pairs of sets (S,A′

i). The right-hand side contains the
products of ϕ values for pairs of the form (S−j, A′

i+j)
for some j ∈ S \A′

i. We want to map each pair (S,A′
i)

to a set (S − j, A′
i + j) without collisions. If we can

do this, it proves the claim. We say the pairs (S1, A′
i)

and (S2, A′
j) are equivalent if S1 ∪ Ai and S2 ∪ Aj

are the same (including multiplicities of the elements).
Now we just need to map each equivalence class of
elements in a collision-free manner. Lemma V.8 below
shows a construction that satisfies the property for t =
1
2 (|S ∪A′

i| − |S ∩A′
i| − 1): identify (S ∪A′

i) \ (S ∩A′
i)

with [2t + 1] and choose j = ft(A
′
i \ S) \ A′

i, where
[n] = {1, . . . , n} and

(
S
t

)
= {T ⊆ S; |T | = t}.

Lemma V.8 For all t there is a bijective function ft :(
[2t+1]
t

)
→
(
[2t+1]
t+1

)
such that S ⊆ ft(S).

Proof: Consider a bipartite graph where the left
nodes are

(
[2t+1]
t

)
and the right nodes are

(
[2t+1]
t+1

)
and

there is an (A,B) edge if A ⊆ B. Notice this is a
regular k + 1-graph. Since all regular bipartite graphs
have perfect matchings, the claim is proved.

B. Proving the dual averaging Lemma

Proof of Lemma V.5 : We want to prove that the
following linear inequality system is feasible:

−
∑
k

xk

n∑
j=k

γj ≤ −1

2

n∑
j=1

γj

∑
k

xkBk

n∑
j=k

γj ≤
n∑
j=1

γjBj∑
k

xk = 1

xk ≥ 0

We will show that the dual system below is feasible
and bounded which shows that the system above is
feasible. The dual is



min−ϕ1
2

n∑
j=1

γj + ψ
n∑
j=1

γjBj + ξ s.t.

− ϕ

 n∑
j=k

γj

+ ψBk

 n∑
j=k

γj

+ ξ ≥ 0, ∀k

ϕ, ψ ≥ 0

This linear program has a feasible solution for any
ϕ, ψ ≥ 0 by setting ξ sufficiently high. So the linear
program is the same as the following optimization
problem:

min
ϕ,ψ≥0

−ϕ1
2

n∑
j=1

γj + ψ
n∑
j=1

γjBj+

+max
k

 n∑
j=k

γj

 (ϕ− ψBk)


Our goal is to prove that for any fixed γk, Bk ≥ 0, for

any values of ϕ, ψ ≥ 0 this is a non-negative expression,
and establishing that it is bounded. We claim that for
some value of k, the following must be non-negative:

−ϕ1
2

n∑
j=1

γj + ψ
n∑
j=1

γjBj +

 n∑
j=k

γj

 (ϕ− ψBk)

We will show this by summing the above expressions
weighted by γk, and showing that the result is non-
negative. Therefore, at least one of the summands must
be non-negative. The sum is∑

k

γk[−ϕ
1

2

n∑
j=1

γj + ψ

n∑
j=1

γjBj+

+

 n∑
j=k

γj

 (ϕ− ψBk)]

And this expression is non-negative, since ϕ is mul-
tiplied by

∑
k

∑
j≥k γjγk − 1

2

∑
k

∑
j γjγk which is

≥ 0 and ψ is multiplied by
∑
k

∑
j γkγjBj −∑

k

∑
j≥k γjγkBk, which is also ≥ 0.
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