
Contextual Pricing for Lipschitz Buyers

Jieming Mao
Princeton University

Renato Paes Leme
Google Research

Jon Schneider
Princeton University

Abstract

We investigate the problem of learning a Lipschitz function from binary feedback.
In this problem, a learner is trying to learn a Lipschitz function f : [0, 1]d → [0, 1]
over the course of T rounds. On round t, an adversary provides the learner with an
input xt, the learner submits a guess yt for f(xt), and learns whether yt > f(xt)
or yt ≤ f(xt). The learner’s goal is to minimize their total loss

∑
t `(f(xt), yt)

(for some loss function `). The problem is motivated by contextual dynamic pric-
ing, where a firm must sell a stream of differentiated products to a collection of
buyers with non-linear valuations for the items and observes only whether the item
was sold or not at the posted price.
For the symmetric loss `(f(xt), yt) = |f(xt) − yt|, we provide an algorithm for
this problem achieving total loss O(log T ) when d = 1 and O(T (d−1)/d) when
d > 1, and show that both bounds are tight (up to a factor of

√
log T ). For the

pricing loss function `(f(xt), yt) = f(xt) − yt1{yt ≤ f(xt)} we show a regret
bound of O(T d/(d+1)) and show that this bound is tight. We present improved
bounds in the special case of a population of linear buyers.

1 Introduction

A major problem in revenue management is designing pricing strategies for highly differentiated
products. Besides the usual tension between exploration and exploitation (often call learning and
earning in revenue management) the problem poses the following additional challenges: (i) the
feedback in pricing problems is very limited: for each item the seller only learns whether the item
was sold or not; (ii) the loss function is discontinuous and asymmetric: pricing slightly under the
buyer’s valuation causes a small loss while pricing slightly above causes the item not to be sold and
therefore a large loss.

The study of learning in pricing settings was pioneered by Kleinberg and Leighton [15] who de-
signed optimal pricing policies in a variety of settings when the products are undifferentiated. Moti-
vated by applications to online commerce and internet advertisement, there has been a lot of interest
in extending such results to contextual settings, where the seller is able to observe characteristics of
each product, typically encoded by a high-dimensional feature vector xt ∈ Rd. The typical approach
in those problems has been to assume that the valuation of the buyer is linear (Amin et al [2], Cohen
et al [10], Lobel et al [20], Nazerzadeh and Javanmard [14], Javanmard [13] and Paes Leme and
Schneider [19]) or that the demand function of a population of buyers is linear (Qiang and Bayati
[21]).

Here we focus on the cases where the buyer’s valuation is non-linear in the feature vectors, or where
there are multiple buyers all with linear valuation functions. These cases can be cast as special cases
of the semi-Lipschitz bandits model of Cesa-Bianchi et al [8]. Our goal is to exploit the special
structure of the pricing problem and obtain improved bounds compared to those achieved for semi-
Lipschitz bandits.

The model is as follows: our seller receives a new item for each of T rounds. The item at time t is
described by a feature vector xt ∈ Rd. The seller is selling these items to a population of b buyers,
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where buyer i is willing to pay up to Vi(xt) for item xt (for some valuation function Vi unknown
to the seller). Every round the seller gets to choose a price pt for the current item. If pt ≤ Vi(xt)
for some i, then some buyer purchases the item and the seller receives revenue pt. Otherwise, no
buyer purchases the item and the seller receives revenue 0. The goal of the seller is to maximize
their revenue, and in particular minimize the difference between their revenue and the revenue of a
seller who knows the Vi’s ahead of time (their regret).

For the special case where there is a single buyer (b = 1) and his valuation is linear in xt, the
tight bound of O(poly(d) log log T ) was recently given in [19]. In this paper, we consider the set-
ting where the number of buyers b is very large (potentially infinite), and we want regret bounds
independent of b. We show:

• If all the Vi are L-Lipschitz, then there is an algorithm for this contextual pricing problem
that achieves regret Θ((LT )d/(d+1)), which is tight (Theorems 4, 7). This improves over
the O(T (d+1)/(d+2)) bound that we obtain by applying the algorithms for semi-Lipschitz
bandits [8].

• If all the Vi are linear (i.e. of the form Vi(x) = 〈vi, x〉 for some vi ∈ [0, 1]d), then
there is an algorithm for this contextual pricing problem that achieves regret Od(T (d−1)/d)
(Corollary 11). We exploit the special structure by casting this pricing problem as learning
the extreme points of a convex set from binary feedback. We also show that any algorithm
for this problem must incur regret at least Ωd(T

(d−1)/(d+1)) (Theorem 12). The lower
bound is obtained through a connection to spherical codes.

To prove these results, we investigate a more general problem, which we term learning a Lipschitz
function with binary feedback, and which may be of independent interest. In this problem, a learner
is trying to learn an L-Lipschitz function f : [0, 1]d → [0, 1] over the course of T rounds. On round
t, the learner is (adversarially) provided with a context xt; the learner must then submit a guess yt
for f(xt), upon which they learn whether yt > f(xt) or yt ≤ f(xt) (and notably, not the value
of f(xt)). The learner’s goal is to minimize their total loss

∑
t `(f(xt), yt), for some loss function

`(·, ·).

For the symmetric loss function `(θ, y) = |θ − y| we provide the following regret bounds:

• when d = 1, there is an algorithm which achieves regret O(L log T ) (Theorem 2). Any
algorithm for this problem must incur regret Ω̃(L

√
log T ) (Theorem 8).

• for d > 1, there is an algorithm which achieves regret Θ(LT (d−1)/d), which is tight (The-
orems 3, 6).

We note that our problem for the symmetric loss function is no longer an instance of Lipschitz or
semi-Lipschitz bandits, since the feedback is very restricted: the algorithm doesn’t learn the actual
loss – it only receives binary feedback as to whether its guess was above or below the true value.

We present two types of algorithms for this problem. The first set of algorithms are based around
the divide-and-conquer strategy of iterative partition refinement which is the main workhorse for
dealing with Lipschitz assumptions in learning [18, 17, 23, 12]. Here the algorithm starts with a
partition of the domain of f (perhaps just the domain itself), and tries to approximate f on each
element of this partition. When the algorithm approximates f on a given element of the partition
accurately enough, it further divides that element.

The second set of algorithms does not keep track of a partition of the domain but instead maintains
lower and upper estimates of the function we are trying to learn. For example, we show that the
natural algorithm which simply chooses the point halfway between the smallest possible value of
f(xt) and the largest possible value of f(xt) consistent with the information known so far (the
“midpoint algorithm”) also achieves our optimal regret bounds. Such algorithms have the advantage
that information learned about f(xt) is not necessarily confined to points in the vicinity of xt, and
thus may perform better in practice. See Section 2.3 for details.

Our lower bounds largely follow directly from the analysis of our algorithms, with the notable
exception of the Ω(

√
log T ) lower bound for the symmetric loss when d = 1. To prove this lower

bound, we demonstrate how to construct a family of Lipschitz functions which encode random walks
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of length≈ log T in the slopes between queried points. Understanding how to close the gap between
Ω(
√

log T ) and O(log T ) for this case is an interesting open question.

The remainder of this paper is organized as follows. In the rest of this section, we discuss related
work and formally define the problem of learning a Lipschitz function with binary feedback. In
Section 2, we present our algorithms for learning a Lipschitz function with binary feedback, and in
Section 3, we provide corresponding lowerbounds. Finally, in Section 4, we discuss how to apply
these results to the contextual pricing problem (with emphasis on the setting with multiple linear
buyers). For conciseness, the majority of proofs are omitted from the main body and appear in
Appendix B.

1.1 Related Work

Our work belongs to the intersection of two major streams of literature: (i) learning for revenue
optimization and (ii) continuum-armed and Lipschitz bandits. For revenue optimization, besides the
work on contextual learning cited earlier, there are interesting other interesting directions such a
learning with limited inventory. See for example Besbes and Zeevi [5], Babaioff et al [3], Badani-
diyuru et al [4], Wang et al [24] and den Boer and Zwart [11]. Also relevant is the work on learning
parametric models: Broder and Rusmevichientong [7], Chen and Farias [9] and Besbes and Zeevi
[6].

Another relevant line of work is research on continuum-armed and Lipschitz bandits. The problem
was introduced by Agrawal [1] and nearly tight bounds were obtained by Kleinberg [18]. Later
the model was been extended to general metric spaces by Slivkins [22], Kleinberg and Slivkins
[16] and Kleinberg, Slivkins and Upfal [17]. The problem with similarity information on contexts
is studied by Hazan and Megiddo [12]. Slivkins [23] extends the Lipschitz bandits to contextual
settings, i.e., when there is similarity information on both contexts and arms. Cesa-Bianchi et al [8]
study the problem under partial feedback and weaken the Lipschitz assumption in previous work to
semi-Lipschitz.

1.2 Learning a Lipschitz function from binary feedback

Definition 1. A function f : R→ R is L-Lipschitz if, for all x, y ∈ R, |f(x)− f(y)| ≤ L|x− y|.

In this paper we study the problem of learning a Lipschitz function from binary feedback. This prob-
lem can be thought of as the following game between an adversary and a learner. At the beginning,
the adversary chooses an L-Lipschitz function f : [0, 1] → [0, 1]. Then, on round t (for T rounds),
the adversary begins by providing the learner with a point xt ∈ [0, 1]. The learner must then submit
a guess yt for f(xt). The learner then learns whether yt > f(xt) or not. The goal of the learner is
to minimize their total loss (alternatively, regret) over T rounds, Reg =

∑T
t=1 `(f(xt), yt), where

`(·, ·) is some loss function.

In this paper, we consider the following two loss functions:

Symmetric loss. The symmetric loss is given by the function `(f(xt), yt) = |f(xt) − yt|. This is
simply the distance between the learner’s guess and the true value.

Pricing loss. The pricing loss is given by the function `(f(xt), yt) = f(xt) − yt1{yt ≤ f(xt)}.
In other words, the pricing loss equals the symmetric loss when the guess yt is less than f(xt) (and
goes to 0 as yt → f(xt)

−), but equals f(xt) when the guess yt is larger than f(xt). This loss often
arises in pricing applications (where setting a price slightly larger than optimal leads to no sale and
much higher regret than a price slightly lower than optimal).

We also consider a variant of this problem for higher-dimensional Lipschitz functions. For functions
f : Rd → R, we defineL-Lipschitz with respect to theL∞-norm on Rd: |f(x)−f(y)| ≤ L‖x−y‖∞
for all x, y ∈ Rd. Our results hold for other Lp norms on Rd, up to polynomial factors in d. We can
then define the problem of learning a (higher-dimensional) Lipschitz function f : [0, 1]d → [0, 1]
analogously as to above.
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Figure 1: Illustration of Algorithm 1: the dashed curve corresponds to the (unknown) Lipschitz
function, the rectangles correspond to feasible regions for the function. When an update results in a
part of the partition with small relative height, we bisect this part of the partition.

Oftentimes, we will want to think of d as fixed, and consider only the asymptotic dependence on T
of some quantity (e.g. the regret of some algorithm). We will use the notation Od(·) and Ωd(·) to
hide the dependency on d.

2 Algorithms for learning a Lipschitz function

2.1 Symmetric Loss

In this subsection we present algorithms for learning Lipschitz functions under the symmetric loss
that incur sublinear total regret. Without loss of generality, we will assume in this section that L ≥ 1
(the results of Appendix A allow us to extend these algorithms to L ≤ 1 with slight modifications to
the regret bounds).

We begin by examining the case where d = 1 (the functions are from R → R). The following
algorithm (Algorithm 1) achieves total loss O(L log T ). Algorithm 1 maintains a partition of the
domain of f ([0, 1]) into a collection of intervals Xj . For each interval Xj , the algorithm maintains
an associated interval Yj that satisfies f(Xj) ⊆ Yj .
When a point x in Xj is queried, the learner submits as their guess the midpoint y of the interval
Yj . The binary feedback of whether y > f(x) or not allows the learner to update the interval
Yj , shrinking it. Once Yj grows small enough with respect to Xj , we bisect Xj into two smaller
intervals. This procedure is illustrated in Figure 1.

Algorithm 1 Algorithm for learning a L-Lipschitz function from R to R under symmetric loss with
regret O(L log T ).

1: Learner maintains a partition of [0, 1] into intervals Xj .
2: Along with each interval Xj , learner maintains an associated range Yj ⊆ [0, 1] such that if
x ∈ Xj , f(x) ∈ Yj .

3: Initially, learner partitions [0, 1] into d8Le intervals Xj of equal length ≤ 1/8L and sets all
Yj = [0, 1].

4: for t = 1 to T do
5: Learner receives an xt ∈ [0, 1] from the adversary.
6: Learner finds j s.t. xt ∈ Xj . Let `j = length(Xj).
7: Learner guesses yt = (max(Yj) + min(Yj))/2.
8: if yt > f(xt) then
9: Yj ← Yj ∩ [0, yt + L`j ]

10: else
11: Yj ← Yj ∩ [yt − L`j , 1].
12: end if
13: Let hj = length(Yj).
14: if hj < 4L`j then
15: Bisect Xj to form two new intervals Xj1 and Xj2 . Set Yj1 = Yj2 = Yj .
16: end if
17: end for

Theorem 2. Algorithm 1 achieves regret O(L log T ) for learning a L-Lipschitz function with sym-
metric loss.
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Roughly, the proof of Theorem 2 follows from the following two properties: i) after a constant num-
ber of queries belonging to any interval Xj , the interval Yj will shrink enough to trigger a bisection,
and ii) the regret of a query in an interval Xj is at most length(Yj) which itself is O(length(Xj)).

Now, if we start with Θ(1) intervals of length Θ(1), throughout the process there will be at most
O(2r) intervals of length Θ(2−r) (those intervals bisected r times). Since each query in an interval
of length ` contributes O(`) to the overall regret, this means that the total regret from T queries is at
most O(1 + 2 · 2−1 + 22 · 2−2 + · · ·+ 2log T · 2− log T ) = O(log T ). The full proof can be found in
Appendix B.

It is possible to extend Algorithm 1 (in a straightforward way) to Lipschitz functions from Rd to R.
Pseudocode for this algorithm is provided in Algorithm 3 in Appendix B. Here, for d > 1, we no
longer get logarithmic regret; instead, Algorithm 3 achieves regret O(LT (d−1)/d).

Theorem 3. Algorithm 3 achieves regret O(LT (d−1)/d) for learning a L-Lipschitz function from
Rd to R with symmetric loss.

The main difference between Theorem 3 and Theorem 2 is that there are now O(2dr) “intervals”
(d-dimensional boxes) of diameter Θ(2−r), so the total regret from T queries is now O(1 + 2d ·
2−1 + 22d · 2−2 + · · ·+ 2log T · 2−(log T )/d) = O(T (d−1)/d).

2.2 Pricing Loss

We now explore algorithms that achieve low regret with respect to the pricing loss function. Our
main approach will be to adapt Algorithm 3 (which achieves low regret with respect to the symmetric
loss function for Lipschitz functions from Rd to R) but stop subdividing once the length of a range
Yj drops below some threshold. The details are summarized in Algorithm 4 in Appendix B.

We show that Algorithm 4 achieves regret O((LT )d/(d+1)). Note that for d = 1, this is O(L
√
T );

unlike in the symmetric loss case, it is impossible to achieve logarithmic regret for the pricing loss
(see Theorem 7).

Theorem 4. Algorithm 4 achieves regret O((LT )d/(d+1)) for learning a L-Lipschitz function from
Rd to R with pricing loss.

As with Theorem 3, a similar analysis to that of Theorem 2 holds, with the exception that the regret
of a query in an interval is O(1) (until the length of the interval shrinks below some threshold, in
which case we play minYj and are guaranteed regret at most length(Yj)). Choosing this threshold
optimally results in the above regret bound.

2.3 Midpoint algorithms

S+

S−

S+

S−

xt

yt
S+

S−

xt

yt

Figure 2: Illustration of the Midpoint Algorithm (Algorithm 2).

Let us return to considering the one-dimensional instance of learning an L-Lipschitz function under
the symmetric loss. One very natural algorithm for this problem is the following. Throughout
the algorithm, maintain two subregions of [0, 1]2; S+, a set of points {(x, y)} that we know are
guaranteed to satisfy y ≥ f(x), and S−, a set of points {(x, y)} that we know are guaranteed to
satisfy y ≤ f(x).

Initially, S+ and S− start empty (or more accurately, containing the two lines [0, 1] × {1} and
[0, 1] × {0}, respectively). Each time we receive feedback of the form yt > f(xt), we can add all
points (x, y) which satisfy y ≥ yt + L|xt − x| to S+; by the L-Lipschitz condition, all such points
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satisfy y ≥ f(x). Similarly, each time we receive feedback of the form yt < f(xt), we can add all
points (x, y) which satisfy y ≤ yt − L|xt − x| to S−.

Finally, to choose yt given xt, we should choose some yt between y− = max{y|(xt, y) ∈ S−} and
y+ = min{y|(xt, y) ∈ S+}. A natural choice is their midpoint (y−+y+)/2. We call this algorithm
the midpoint algorithm; its details are summarized in Algorithm 2. This process is depicted in Figure
2.

Algorithm 2 Midpoint algorithm for learning a L-Lipschitz function from R to R under symmetric
loss with regret O(L log T ).

1: Learner maintains two polygonal subsets S+ and S− of [0, 1]2.
2: Initially, S+ = {(x, 1)|x ∈ [0, 1]} and S− = {(x, 0)|x ∈ [0, 1]}.
3: for t = 1 to T do
4: Learner receives an xt ∈ [0, 1] from the adversary.
5: Learner computes y− = max{y|(xt, y) ∈ S−} and y+ = min{y|(xt, y) ∈ S+}.
6: Learner guesses yt = (y− + y+)/2.
7: if yt > f(xt) then
8: S+ ← S+ ∪ {(x, y)|y ≥ yt + L|xt − x|}.
9: else

10: S− ← S− ∪ {(x, y)|y ≤ yt − L|xt − x|}.
11: end if
12: end for

Note that while Algorithms 1, 3, and 4 are low-regret (with essentially tight matching lower-bounds)
and efficiently implementable, they don’t share information between different intervals Xi. One
advantage of the midpoint algorithm over these algorithms is that information provided from a query
at a point x is not necessarily localized to the immediate neighborhood around x.

We show that, like Algorithm 1, the midpoint algorithm is also low regret.
Theorem 5. Algorithm 2 achieves regret O(log T ) for learning a L-Lipschitz function from R to R
with symmetric loss.

It is likewise possible to adapt the midpoint algorithm to multiple dimensions and to the pricing
loss function (by choosing y− whenever y+ − y− is below some threshold) and prove analogues of
Theorems 3 and 4. We omit the details for conciseness.

3 Lower bounds for learning a Lipschitz function

In this section, we state lower bounds for our results in Section 2. Interestingly all our lower bounds
also hold for a slightly easier problem in which the algorithm learns the value of f(xt) after round t
(instead of just whether y < f(xt)).

Generally, all of our lower bounds work in the following way. We construct a collection C of
L-Lipschitz functions and a sequence of queries x1, x2, . . . , xT for the adversary such that for a
random function f in C, f(xt) is equally likely to be 1

2 + δt or 1
2 − δt for some δt, even conditioned

on the values of f(x1) through f(xt−1).

For both the symmetric loss when d > 1, and the pricing loss (for all d), constructing such a
collection is easy; we simply divide the domain into small cubes, let x1 through xT run over the
centers of such cubes, and let f(xt) be either 1

2 + δ or 1
2 − δ with equal probability. Optimizing δ

leads to the following tight lower bounds.
Theorem 6. For d > 1 and L ≤ T 1/d, any algorithm for learning an L-Lipschitz function with
symmetric loss must incur Ω

(
LT

d−1
d

)
regret for the d-dimensional case.

Theorem 7. For L ≤ T 1/d, any algorithm for learning an L-Lipschitz function with the pricing
loss must incur Ω

(
(LT )

d
d+1

)
regret for the d-dimensional case.

More interesting is the case of the symmetric loss when d = 1. Here we obtain an Ω̃(
√

log T ) lower
bound.
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Theorem 8. Any algorithm for learning an L-Lipschitz function with symmetric loss must incur

Ω
(
L
√

log T
log log T

)
regret.

The proof of Theorem 8 proceeds roughly as follows. Our queries xt will range over all the dyadic
rationals, in order of increasing denominator (e.g. in the order 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8).
We now use this sequence of xt’s to adaptively construct a Lipschitz function f(x) in the following
way. We start by setting f(0) = f(1) = 1/2. To set the value of f(xt) for some xt = 2i+1

2r , let
L = i/2r−1 and R = (i+ 1)/2r−1 (note that xt is the midpoint of [L,R], and f(L) and f(R) have
already been chosen inductively). Let m be the slope between (L, f(L)) and (R, f(R)). Now, we
choose f(xt) so that the slope between (L, f(L)) and (xt, f(xt)) ism+δ with probability 1/2, and
m−δ with probability 1/2. If this causes the Lipschitz condition to be violated (becausem+δ > L
or m− δ < −L), we instead just set f(xt) = (f(L) + f(R))/2.

This process has the interesting property that the slope of a segment of length 2−r of this function
f is δ times a random walk of length r. If we choose δ = Θ(1/

√
log T ), then we can run this

random walk for ≈ L log T steps without running into this Lipschitz constraint (since the expected
maximum value of a random walk of length n is Θ̃(

√
n)). Analyzing the regret for this choice of δ

leads to the regret bound in Theorem 8. For more details, see Appendix B.

4 Contextual Pricing for Linear Buyers

We now show how to apply our solutions to the problem of learning a Lipschitz function (in partic-
ular, with respect to the pricing loss function) to the problem of contextual dynamic pricing (with a
particular emphasis on when all the buyers have linear valuation functions).

We begin by examining the case where each buyer i (for 1 ≤ i ≤ b) has an L-Lipschitz valuation
function Vi : [0, 1]d → [0, 1], with Vi(x) representing how much they would be willing to pay for an
item with features x ∈ Rd. Let f(x) = maxi Vi(x). Note that the seller successfully makes a sale
at round t if pt ≤ f(xt), in which case the seller receives revenue pt; otherwise, the seller receives
revenue 0. But now, note that since f is the maximum of several L-Lipschitz functions, f is also
L-Lipschitz. This problem is therefore exactly the problem of learning a Lipschitz function with
respect to the pricing loss function. Since f can be any L-Lipschitz function from [0, 1]d → [0, 1],
lower bounds for learning such functions carry over to this dynamic pricing problem. Theorems 4
and 7 thus imply the following corollary.

Corollary 9. There exists an algorithm for solving the contextual dynamic pricing problem for L-
Lipschitz buyers in d dimensions with total regret O((LT )d/(d+1)). Any algorithm for solving the
contextual dynamic pricing problem for L-Lipschitz buyers in d dimensions must incur total regret
at least Ω((LT )d/(d+1)).

An interesting special case is the one where all buyers have linear valuations, i.e., Vi(x) = 〈vi, u〉
for some vector vi ∈ [0, 1]d. The case with b = 1 buyer is very well-studied and a regret bound of
O(poly(d) log log T ) is possible [19]. For b > 1, we exploit the special structure of the problem to
improve over the O(T d/(d+1)) guarantee of Corollary 9.

We begin by reinterpreting this problem geometrically as follows. Define S to be the convex hull
conv(0, v1, v2, . . . , vb). Note that there exists a buyer willing to buy an item xt ∈ [0, 1]d at price pt
iff the hyperplane {u ∈ Rd; 〈xt, u〉 = pt} intersects the set S. For this reason, we will abuse notation
and refer to this convex hull S as the “set of buyers” (indeed, adding a buyer with a v corresponding
to any point within S does not change the outcome any sale). One can then alternatively view the
dynamic pricing problem for linear buyers as the problem of learning the extreme points of a convex
set S ⊆ [0, 1]d from binary feedback.

In this problem, the context provided by the adversary is the feature vector xt of the item at time
t. Since without loss of generality, this context xt is a unit vector in Rd (if it is not one, it can
be scaled to become one along with the price, at the cost of at most a

√
d factor in regret), and

is therefore a (d − 1)-dimensional object. We will parametrize these unit vectors via generalized
spherical coordinates; that is, the (d− 1)-tuple (θ1, θ2, . . . , θd−1) ∈ [0, π/2]d−1 corresponds to the
unit vector defined by
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(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, . . . , sin θ1 sin θ2 · · · sin θd−2 cos θd−1) .

Let x(θ) (for θ ∈ [0, π/2]d−1) be the above unit vector in Rd. We make the following observation.

Lemma 10. Let F (θ) = maxv∈S〈x(θ), v〉. Then F is L-Lipschitz for L = O(d2).

Now, note that the dynamic pricing problem for linear buyers is exactly the problem of learning the
function F with respect to the pricing loss; every round, the adversary supplies a context θ, the seller
submits a price p, and the seller receives revenue p if F (θ) ≥ p and revenue 0 otherwise. Theorem
4 immediately implies the following corollary.

Corollary 11. There exists an algorithm for solving the contextual dynamic pricing problem in
d > 1 dimensions with total regret O(d2(d−1)/dT (d−1)/d) = Od(T

(d−1)/d).

Unfortunately, not every Lipschitz function can occur as a valid F (θ), so the lower bounds from
Section 3 do not immediately hold. Nonetheless, we can adapt the ideas from Theorem 7 to prove
that any algorithm for solving the contextual dynamic pricing problem in d dimensions must incur
regret Ωd(T

(d−1)/(d+1)).

Theorem 12. Any algorithm for solving the contextual dynamic pricing problem in d > 1 dimen-
sions must incur total regret at least Ωd(T

(d−1)/(d+1)).

To prove Theorem 12, we will need the following lemma regarding the maximum size of spherical
codes.

Lemma 13. Let α > 0. Then there exists a set Uα of Θd(α
−(d−1)) unit vectors in (R+)d such

that for any two distinct elements u, u′ of Uα, 〈u, u′〉 ≤ cosα (i.e. any two distinct unit vectors are
separated by angle at least α).

We now proceed to prove Theorem 12.

Proof of Theorem 12. Choose α = Θd(T
−1/(d+1)). The adversary will choose the set B of buyers

as follows. For every element v of the set Uα (defined in Lemma 13), the adversary with probability
half adds v to B, and otherwise adds (cosα)v to B. The adversary will then choose the contexts as
follows: for each element u in Ut, the adversary will set ut = u for T/|Uα| rounds.

We claim no learning algorithm achieves Od(T (d−1)/(d+1)) regret against this adversary. Consider
each element u of Uα, and consider the rounds where xt = u. Either one of two cases must occur:

• Case 1: the algorithm never sets a price larger than cosα. Then, with probability 1/2 (if
u ∈ B), the maximal price the algorithm could have set was 1, so the algorithm incurs
expected regret at least 1

2 (1 − cosα)(T/|Uα|) = Ωd
(
α2 T

α−(d−1)

)
= Ωd(Tα

(d+1)) =
Ωd(1).

• Case 2: the algorithm at some point sets a price larger than cosα. Then, with probability
1/2 (if u 6∈ B) the largest price the algorithm could have set was cosα (since 〈u′, u〉 ≤
cosα for all other u′ ∈ ut, and we know (cosα)u ∈ B), so the algorithm overprices and
incurs expected regret at least 1

2 cosα = Ω(1).

In either case, the algorithm incurs at least Ωd(1) regret. Over all |Ut| different contexts, this is at
least Ωd(T

(d−1)/(d+1)) regret.

Closing the gap between the upper bound of Od(T
(d−1)/d) and the lower bound of

Ωd(T
(d−1)/(d+1)) is an interesting open problem.
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A Reductions Between Different Lipschitz Constants for Symmetric Loss

In this section, we provide black-box reductions that allow us to convert low-regret algorithms for
learning L-Lipschitz functions into L′-Lipschitz functions. These reductions prove important for
obtaining the correct regret bounds in L in Section 2, along with allowing us to argue only about
L ≥ 1 (for the symmetric loss).
Lemma 14. Suppose for some specific L, an algorithm A achieves regret r(T ) for learning an L-
Lipschitz function with symmetric loss in the d-dimensional case, where r(T ) is concave in T . For
any L′ > L, let α = dL

′

L e. Then there exists an algorithm A′ that achieves regret αd · r
(
T
αd

)
for

learning an L′-Lipschitz function with symmetric loss in the d-dimensional case.

Proof. Partition [0, 1]d into αd small cubes of edge length 1/α. For each such cube, if we expand
the edge length by a multiple of α, then any function that is L′-Lipschitz in the cube will become
L-Lipschitz. So our new algorithm will just expand the edge length of all cubes by a multiple of α
and run algorithm A on each small cube separately.

Label the αd small cubes 1 through αd, and assume cube i receives Ti queries. We have T =
T1 + · · ·+ Tαd . By Jensen’s inequality, the new algorithm will have regret

αd∑
i=1

r(Ti) ≤ αd · r
(
T

αd

)
.

Lemma 15. Suppose an algorithm A achieves regret r(T ) for learning an 1-Lipschitz function with
symmetric loss in the d-dimensional case. For any L < 1, let α = b 1

L′ c, we have an algorithm that
achieves regret at most 4

α · r (T ) +O(1) for learning an L-Lipschitz function with symmetric loss in
the d-dimensional case.

Proof. When α ≤ 4, the bound follows trivially from just applying A. Now we assume α ≥ 4
and therefore L ≤ 1/4. When the function is 1

4 -Lipschitz, we know the gap between the maximum
value and the minimum value of the function in [0, 1]d is at most 1

4 .

Now, similarly to the process in Algorithm 1, we do a binary search to find a small interval Y such
that f([0, 1]d) ⊂ Y , stopping when length(Y ) is no more than 4

α . This step results in at most O(1)
regret (since the length of Y decreases by a constant factor every query). We can then multiply the
function range by a factor α

4 and run algorithm A for the remainder of the rounds. This part has
regret at most 4

α · r (T ). This new algorithm has regret at most 4
α · r (T ) + O(1) for learning an

L-Lipschitz function with symmetric loss.

B Omitted algorithms and proofs

Proof of Theorem 2

Proof. We begin by proving some preliminary lemmas. We begin by showing that it is always the
case that f(Xj) ⊆ Yj .
Lemma 16. LetXj be an interval in the partition maintained by Algorithm 1 (at some time t). Then
for any x ∈ Xj , f(x) ∈ Yj .

Proof. Note that in the initial partition, all the Yj’s start off equal to [0, 1], where this holds trivially.
In addition, whenever we create new intervals (via bisection of old intervals), we initially set the
range for the each of the new intervals equal to the range for the old itnervals. It therefore suffices
to show that this property continues to hold whenever we update Yj in response to learning whether
yt > f(xt).

We update Yj in response to learning that y > f(x) (or ≤ f(x)) for some x ∈ Xj and some y ∈ Yj .
Note that if f(x) < y, then by the Lipschitz property, for any x′ ∈ Xj , f(x′) < f(x) +L|x′−x| <
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y + L · length(Xj). Likewise, if f(x) > y, then by the Lipschitz property, for any x′ ∈ Xj ,
f(x′) > f(x)−L|x′−x| > y−L · length(Xj). Letting `j = length(Xj), it follows that in the first
case f(Xj) ⊆ [0, y + L`j ] and in the second case, f(Xj) ⊆ [y − L`j , 1], and therefore the update
rules preserve this property.

We now show that if hj ≥ 4L`j , then performing the update in lines 8-12 of the algorithm decreases
hj by a factor of at least 3/4 and at most 1/2.

Lemma 17. Let hj equal the length of Yj before the update in lines 8-12, and let h′j equal the length
of Yj after the update in lines 8-12. Then if hj ≥ 4L`j , h′j/hj ∈ [1/2, 3/4].

Proof. Recall that the guess yt is the midpoint of the interval Yj . Regardless of whether yt > f(xt)
or yt ≤ f(xt), h′j = hj/2 + L`j . It immediately follows that h′j/hj ≥ 1/2. On the other hand,
since hj ≥ 4L`j , h′j/hj = 1/2 + L`j/hj ≤ 3

4 .

Finally, we show that it is always the case that (at the beginning of a turn) hj ≥ 4L`j .

Lemma 18. Let Xj be an interval in the partition (at the beginning of some turn t). Then
length(Yj) ≥ 4L · length(Xj), and length(Yj) ≤ 8L · length(Xj).

Proof. Let hj = length(Yj) and `j = length(Xj).

By the construction of the initial partition, this is true at the beginning of turn 1. We must show that
whenever hj drops below 4L`j , bisecting the interval Xj (as in lines 14-16) restores this property.
But this is true, since by Lemma 17, we must still have that hj > 2L`j after the update to Yj . When
Xj is bisected to form intervals Xj1 and Xj2 , `j1 = `j2 = `j/2, but hj1 = hj2 = hj , so it is true
that hj1 > 4L`j1 . Similarly, since hj < 4L`j right before a bisection, hj1 = hj < 4L`j = 8L`j1 ,
as desired.

We now analyze the regret incurred by this algorithm. We say an interval Xj in our partition has
depth r if it is the result of the bisection of an interval at depth r − 1 (where the initial intervals all
have depth 0). Note that if Xj is at depth r, then length(Xj) ≤ 2−r/8L. By Lemma 18, it follows
that if Xj is at depth r, then length(Yj) ≤ 2−r.

We claim that an adversary can choose a point xt belonging to an interval Xj of depth r at most
O(1) times before our algorithm splits Xj into two smaller intervals. To see why this is true, note
that by Lemma 18, Yj starts off satisfying length(Yj) ≤ 8L · length(Xj), and we must bisect Xj as
soon as length(Yj) ≤ 4L · length(Xj). But by Lemma 17, length(Yj) shrinks by a factor of at least
3/4 each time xt belongs to Xj . Since (3/4)3 < 1/2, after at most 3 iterations, we must divide Xj

into two smaller intervals. Note that the total amount of regret incurred in turns where xt belongs to
an interval Xj of depth r is at therefore at most length(Yj) ·O(1) = O(2−r).

Now, there are at most O(L2r) intervals of depth r, so the total regret contributed from intervals of
depth r is O(L). Over the course of T rounds (where, by this analysis you can be charged regret
O(2−r) at most O(L2r) times), this leads to a total regret of at most O(L log T ).

Proof of Theorem 3 (Algorithm 3)

We define the diameter diam(X) of a subset X ⊆ Rd to be the maximum of ||x − y||∞ over all
pairs x, y ∈ X . Note that diam([0, 1]d) = 1.

Proof. We proceed similarly to the proof of Theorem 2. Note that, without loss of generality we
can assume that L = 1/8 (so the initial partition just contains the box [0, 1]d). If we show a regret
bound of O(T (d−1)/d) for the case where L = 1/8, then Lemma 14 implies a regret bound of
O(Ld(T/Ld)(d−1)/d) = O(LT (d−1)/d) in general.

As before, the following analogues of Lemmas 16, 17, and 18 hold (with the proofs carrying over
essentially verbatim).

Lemma 19. LetXj be an interval in the partition maintained by Algorithm 1 (at some time t). Then
for any x ∈ Xj , f(x) ∈ Yj .
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Algorithm 3 Algorithm for learning a L-Lipschitz function from Rd to R (d > 1) under symmetric
loss with regret O(LT (d−1)/d).

1: Learner maintains a partition of [0, 1]d into boxes (cartesian products of intervals) Xj .
2: Along with each interval Xj , learner maintains an associated range Yj ⊆ [0, 1] such that if
x ∈ Xj , f(x) ∈ Yj .

3: Initially, learner partitions [0, 1]d into d(8L)de boxes Xj with side lengths ≤ 1/8L and sets all
Yj = [0, 1].

4: for t = 1 to T do
5: Learner receives an xt ∈ [0, 1] from the adversary.
6: Learner finds j s.t. xt ∈ Xj . Let `j = diam(Xj).
7: Learner guesses yt = (max(Yj) + min(Yj))/2.
8: if yt > f(xt) then
9: Yj ← Yj ∩ [0, yt + L`j ]

10: else
11: Yj ← Yj ∩ [yt − L`j , 1].
12: end if
13: Let hj = length(Yj).
14: if hj < 4L`j then
15: Bisect each side of Xj to form 2d new boxes Xj1 through Xj

2d
. Set Yjk = Yj (for

1 ≤ k ≤ 2d).
16: end if
17: end for

Lemma 20. Let hj equal the length of Yj before the update in lines 8-12, and let h′j equal the length
of Yj after the update in lines 8-12. Then if hj ≥ 4L`j , h′j/hj ∈ [1/2, 3/4].

Lemma 21. Let Xj be an interval in the partition (at the beginning of some turn t). Then
length(Yj) ≥ 4L · diam(Xj), and length(Yj) ≤ 8L · diam(Xj).

We again define the notion of depth by saying that a box Xj in our partition has depth r if it is the
result of the bisection (into 2d parts) of a box at depth r − 1 (where the initial boxes all have depth
0). Since the diameter of each box in a bisection is exactly half of that of the original box, if Xj

is at depth r, then diam(Xj) ≤ 2−r/8L. By Lemma 18, it follows that if Xj is at depth r, then
diam(Yj) ≤ 2−r.

Similarly as to in the proof of Theorem 3, we can show that an adversary can choose a point xt
belonging to a box Xj of depth r at most O(1) times before our algorithm splits Xj into 2d smaller
boxes. Note that the total amount of regret incurred in turns where xt belongs to a box Xj of depth
r is at therefore at most length(Yj) ·O(1) = O(2−r).

Now, there are at most O(2rd) intervals of depth r (since L = 1/8, so there is only 1 interval of
depth 0), so the total regret contributed from boxes of depth r is O(2r(d−1)). Over the course of T
rounds (where, by this analysis you can be charged regret O(2−r) at most O(2dr) times), this leads
to a total regret of at most O(T (d−1)/d), as desired.

Proof of Theorem 4 (Algorithm 4)

Proof. We adapt the analysis from Theorem 3 (of Algorithm 3) to Algorithm 4. There are two
primary differences between Algorithm 3 and Algorithm 4:

1. We stop following Algorithm 3 once the size of a range Yj corresponding to some box
drops below τ = ((8L)d/T )1/d+1. At this point, we always choose min(Yj), so we are
guaranteed not to overguess the value of f(xt), and the total loss from queries in such boxes
is therefore at most O(Tτ) = O((8LT )d/(d+1)) = O((LT )d/d+1).

2. Unlike in Theorem 3, the total amount of regret incurred in turns where xt belongs to a
box of depth r is now O(1) (instead of O(length(Yj)) = O(2−r)), since overguessing can
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Algorithm 4 Algorithm for learning a L-Lipschitz function from Rd to R (d > 1) under pricing loss
with regret Od((LT )d/(d+1)).

1: Learner maintains a partition of [0, 1]d into boxes (cartesian products of intervals) Xj .
2: Along with each interval Xj , learner maintains an associated range Yj ⊆ [0, 1] such that if
x ∈ Xj , f(x) ∈ Yj .

3: Initially, learner partitions [0, 1]d into d(8L)de boxes Xj with side lengths ≤ 1/(8L) and sets
all Yj = [0, 1].

4: for t = 1 to T do
5: Learner receives an xt ∈ [0, 1] from the adversary.
6: Learner finds j s.t. xt ∈ Xj . Let `j = diam(Xj), and let hj = length(Yj).
7: if hj ≤ ((8L)d/T )1/d+1 then
8: Learner guesses yt = min(Yj).
9: else

10: Learner guesses yt = (max(Yj) + min(Yj))/2.
11: if yt > f(xt) then
12: Yj ← Yj ∩ [0, yt + L`j ]
13: else
14: Yj ← Yj ∩ [yt − L`j , 1].
15: end if
16: if hj < 4L`j then
17: Bisect each side of Xj to form 2d new boxes Xj1 through Xj

2d
. Set Yjk = Yj (for

1 ≤ k ≤ 2d).
18: end if
19: end if
20: end for

lead to Θ(1) regret. This means that the total regret contributed from boxes of depth r is
O((8L)d2rd), i.e. the number of intervals of depth r.

Now, since the length of Yj for a box Xj of depth r is at most 2−r, any box of depth at least log 1/τ

satisfies length(Yj) ≤ τ . The total number of boxes at depth at most log 1/τ isO((8L)d2d log 1/τ ) =

O((8L/τ)d) = O((8LT )d/(d+1)) = O((LT )d/d+1). Each of these boxes contributes O(1) loss, so
our total loss is O((LT )d/d+1), as desired.

Proof of Theorem 5

Proof. We will mirror the analysis of Theorem 2.

Augment Algorithm 2 to keep track of a partition of [0, 1] into intervals Xj along with associated
ranges Yj for each interval Xj . Similarly as in Algorithm 1, we start with the partition into d16Le
intervals Xj of equal length ≤ 1/16L. At any point in time, we define Yj via

Yj =

[
min
x∈Xj

max{y | (x, y) ∈ S−}, max
x∈Xj

min{y | (x, y) ∈ S+}
]
.

Similarly as in Algorithm 1, once length(Yj) < 6Llength(Xj), we will divide Xj to form four new
intervals of equal lengths.

By the definition of Yj (and S+ and S−), it is true that if x ∈ Xj , then f(x) ∈ Yj . We will now
prove the analogues of Lemmas 17 and 18.

Lemma 22. Assume xt ∈ Xj , and let `j = length(Xj). Let hj equal the length of Yj before
the update in lines 7-11, and let h′j equal the length of Yj after the update in lines 7-11. Then if
hj ≥ 6L`j , h′j/hj ∈ [1/3, 5/6].

Proof. Define ymid = (min(Yj)+max(Yj))/2 (i.e., the guess Algorithm 1 would have made in this
situation). We first claim that yt = (y− + y+)/2 is close to ymid, namely that |ymid − yt| ≤ L`j .
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To do this, note that the boundary of S− and S+ is composed of line segments of slope L, −L, and
0, so it is L-Lipschitz, and therefore |y− −min(Yj)| ≤ `j , and |y+ −max(Yj)| ≤ `j .
Now, if yt ≤ f(xt), then min(Yj) increases (and hj decreases) by at least |yt −min(Yj)| − L`j ≥
|ymid − min(Yj)| − |yt − ymid| − L`j ≥ hj/2 − 2L`j . Since hj ≥ 6L`j , this is at least L`j , so
h′j/hj ≤ 5

6 . Similarly, min(Yj) increases by at most |yt −min(Yj)| ≤ |ymid −min(Yj)| + |yt −
ymid| ≤ hj/2 + L`j , so h′j/hj ≥ 1

3 .

By symmetry, when yt > f(xt), it is also true that h′j/hj ∈ [1/3, 5/6].

Lemma 23. Let Xj be an interval in the partition (at the beginning of some turn t). Then
length(Yj) ≥ 6L · length(Xj), and length(Yj) ≤ 16L · length(Xj).

Proof. Let hj = length(Yj) and `j = length(Xj).

By the construction of the initial partition, this is true at the beginning of turn 1. We must show that
whenever hj drops below 6L`j , trisecting the interval Xj (as in lines 14-16) restores this property.
But this is true, since by Lemma 17, we must still have that hj > 2L`j after the update to Yj . When
Xj is divided into four equal intervals Xj1 , Xj2 , Xj3 , and X4, length(Xjk) = `j/4. On the other
hand, for each Yjk , hj − 2L`j ≤ length(Yjk) ≤ hj (since max(Yj) −max(Yjk) ∈ [0, L`j ] by the
Lipschitz condition, and likewise min(Yjk) − min(Yj) ∈ [0, L`j ]). It follows that length(Yjk) ≥
6Llength(Xjk). Similarly, since hj < 4L`j right before a division, length(Yjk) ≤ 16Llength(Xjk),
as desired.

With these two lemmas, the proof of Theorem 2 applies to show that the midpoint algorithm achieves
regret O(L log T ).

Proof of Theorem 6

Proof. Without loss of generality, we assume that T = αd where α is an integer. Partition [0, 1]d

into αd small cubes of edge length 1/α. Pick x1, . . . , xT to be the center of all these cubes. Note
that for any i 6= j, ‖xi−xj‖∞ ≥ 1/α. For each i = 1, ..., T , we pick f(xi) uniformly random to be
1/2 + L/(2α) or 1/2− L/(2α) (independent of other f(xj)’s). For any realized f(x1), ..., f(xT ),
the function is L-Lipschitz as ∀i 6= j,

|f(xi)− f(xj)| ≤ L/α ≤ L‖xi − xj‖∞.

The function values are also bounded in [0, 1] since L ≤ T 1/d = α.

Since each f(xi) is independent from other f(xj)’s, it’s easy to see that any algorithm will have
L/(2α) expected loss in each round. Therefore any algorithm will have expected regret at least

L

2α
· T =

LT

2T 1/d
= Ω(LT

d−1
d ).

Proof of Theorem 7

Proof. When LT < 1, the theorem statement becomes trivial. We now assume LT ≥ 1.

Without loss of generality, we assume that LT = αd+1 where α is an integer. Partition [0, 1]d into
αd small cubes of edge length 1/α. Pick x1, . . . , xT to be the center of all these cubes such that each
center is queried for T 1/(d+1)/Ld/(d+1) rounds. We then have for any i 6= j that ‖xi−xj‖∞ ≥ 1/α.
For each center, we pick its function value uniformly random to be 3/4 +L/(4α) or 3/4−L/(4α).
For any realized f(x1), ..., f(xT ), the function is L-Lipschitz as ∀xi 6= xj ,

|f(xi)− f(xj)| ≤ L/(2α) ≤ L‖xi − xj‖∞.

The function values are also bounded in [1/2, 1] since L ≤ α.
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Consider the center of each cube. Each center is queried T 1/(d+1)/Ld/(d+1) times and has value
either 3/4 + L/(4α) or 3/4 − L/(4α). Since we are concerned with the expected regret of our
algorithm over some distribution of functions, we can wlog assume the algorithm is deterministic.
We divide the deterministic algorithms for this specific center into 2 cases:

• Case 1: the algorithm never query some value> 3/4+L/(4α). Then with probability half,
when the function value is actually 3/4 + L/(4α), the algorithm has pricing loss L/(2α).
In this case, the algorithm has expected regret at least T

1/(d+1)

Ld/(d+1) · L2α = Ω(1) on one center.

• Case 2: the algorithm queries some value > 3/4 − L/(4α). Then with probability half,
when the function value is actually 3/4 − L/(4α), the algorithm has pricing loss 3/4 −
L/(4α) just in the round when it queries some value > 3/4 − L/(4α). In this case, the
algorithm also has expected regret at least Ω(1) on one center.

To sum up, any algorithm will have expected regret at least Ω(1) on each center. Since there are
αd = (LT )

d
d+1 centers, any algorithm will have expected regret at least Ω

(
(LT )

d
d+1

)
.

Proof of Theorem 8

Proof. We will sample a function randomly and we will show that any algorithm will have

Ω
(
L
√

log T
log log T

)
regret in expectation.

We first prove the case when L ≤ 1. Let m = blog2(T + 1)c. We will focus on the first 2m − 1
rounds. For the random function f , we fix f(0) = f(1) = 1/2. For function values on other values
of xt, we will sample f(xt) in round t and make sure that there exists an L-lipschitz function that
are consistent with the known (x, f(x)) pairs.

x1 = 1/2

x2 = 1/4

x4 = 1/8 x5 = 3/8

x3 = 3/4

x6 = 5/8 x7 = 7/8

Figure 3: Construction of xt in the lower bound

Let’s first fix the values of x1, ..., x2m−1 (as in Figure 3). We determine them in m levels. In level i,
we determine the value of x2i−1 , ..., x2i−1. For j = 0, ..., 2i−1 − 1, x2i−1+j is set to 2j+1

2i .

Let’s now define how to choose f(xt). We will proceed level by level. Set δ = 1/
√

log T log log T .
For each t in level i (i.e. t = 2i−1 + j for some j ∈ {0, ..., 2i−1 − 1} and xt = 2j+1

2i ), we will
define f(xt) based on its nearest defined locations: f

(
j

2i−1

)
and f

(
j+1
2i−1

)
. Let the slope

dt =
f
(
j+1
2i−1

)
− f

(
j

2i−1

)
1

2i−1

and the average

mt =
1

2
·
(
f

(
j

2i−1

)
+ f

(
j + 1

2i−1

))
.

To choose f(xt), there are two cases:

• Case 1: If |dt|+ Lδ > L, f(xt) = mt.
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• Case 2: Otherwise, f(xt) = mt + Lδ
2i with probability 1/2, and f(xt) = mt − Lδ

2i , with
probability 1/2.

It is not hard to check that after defining f(xt), there still exist a L-Lipschitz function that are
consistent with the known (x, f(x)) pairs (in particular, this is true since every pair of neighboring
xt’s satisfies the Lipschitz constraint).

We will now show that in each level, a constant fraction of xt are defined via case 2. For each xt
in level i, it has two children x2t and x2t+1 in level i + 1 (as in Figure 3). By the construction, we
know that if |dt|+Lδ ≤ L, then one of d2t and d2t+1 is dt +Lδ and the other one is dt−Lδ. If we
take a random path from root to leaves as in Figure 3, the sequence of dt’s on the path behave like a
random walk. Specifically this random walk has step length Lδ and it stops when hits L or −L. We
know if the random walk does not hit L or −L, it means that all the f(xt)’s on the path is defined
in case 2. Since the path has length m = O(log T ) and we pick δ = 1/

√
log T log log T , we know

that at least constant fraction of the paths never hit L or −L. It follows that in each level, there are
at least a constant fraction of xt’s which are defined in case 2.

For any xt’s in level i, if f(xt) is defined in case two, any algorithm will get expected loss at least
Ω(Lδ/2i) in round t. We know that in each level, at least constant fraction of xt’s are defined in
case 2. Therefore any algorithm will get expected regret

Ω

(
m∑
i=1

2i−1 · Lδ
2i

)
= Ω(Lδm) = Ω

(
L

√
log T

log log T

)
.

For the case when L > 1, if we directly use the above construction, the function value might exceed
[0, 1]. Wlog we assume L is an integer. Divide x-axis into L regions: [0, 1/L], [1/L, 2/L], ...,[(L−
1)/L, 1]. In i-th region, freshly sample a 1-Lipschitz function f with T/L locations according to the
above procedure and construct function fi(x) = f

((
x− i−1

L

)
· L
)

for x ∈ [ i−1L , iL ]. Now consider
function f ′ which is defined as combination of f1, ..., fL: f ′(x) = fi(x) for x ∈ [ i−1L , iL ]. It’s not
hard to see that f ′ is L-Lipschitz. Also using the argument above, we get that any algorithm will

have Ω
(√

log(T/L)
log log(T/L)

)
= Ω

(√
log T

log log T

)
in each region [(i − 1)/L, i/L] for i = 1, ..., L. Since

any algorithm does not learn anything about region j from function values in region i for i 6= j, any

algorithm will have Ω
(
L
√

log T
log log T

)
expected regret on function f ′.

Proof of Lemma 10

Proof. First, note that sinx and cosx are both 1-Lipschitz functions, and that the product of d 1-
Lipschitz functions bounded in [−1, 1] is d-Lipschitz. From this, it follows that the ith component
of x(θ) is i-Lipschitz.

Now, note that F (θ) = 〈x(θ), vθ〉 for some vθ. Now, for any θ′,

F (θ′) = max
v∈S
〈x(θ′), v〉

≥ 〈x(θ′), vθ〉
= 〈x(θ), vθ〉+ 〈x(θ′)− x(θ), vθ〉
≥ F (θ)− ||x(θ′)− x(θ)||1

= F (θ)−
d−1∑
i=1

|x(θ′)i − x(θ)i|

≥ F (θ)−
d−1∑
i=1

i||θ′ − θ||∞

= F (θ)− d(d− 1)

2
||θ′ − θ||∞
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It follows that

F (θ)− F (θ′) ≤ d(d− 1)

2
||θ′ − θ||∞.

By symmetry, it is also the case that

F (θ′)− F (θ) ≤ d(d− 1)

2
||θ′ − θ||∞,

and therefore F is d(d− 1)/2-Lipschitz.

Proof of Lemma 13

Proof. We show how to construct such a set of unit vectors in Rd. By then taking the orthant with
the largest number of elements of this set (and rotating this orthant appropriately), this then leads to
a construction of such a set of unit vectors in (R+)d (at the cost of a factor of 2d).

Let Sd−1 be the unit sphere in Rd, and let B(α, u) ⊂ Sd−1 be the subset of the unit sphere of points
that form an angle of at most α with u. Note that if µ is the boundary measure of Sd−1, then simple
calculus shows that µ(B(α, u))/µ(Sd−1) = Θd(α

(d−1)).

We will now construct our set of unit vectors iteratively in the following way. Assume our set
already includes the unit vectors u1, u2, . . . , un. Now choose un+1 to be any point in Sn+1 =
Sd−1 \

⋃n
i=1B(α, ui). Note that any point in Sn+1 forms an angle of at least α with all of the ui.

In addition, as long as nµ(B(α, ui)) ≤ µ(Sd−1), Sn+1 is guaranteed to be nonempty. Therefore we
can continue this procedure until n ≥ µ(Sd−1)/µ(B(α, ui)) = Θd(α

−(d−1)). The result follows.
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