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ABSTRACT
Generalized Second Price (GSP) auction is the primary auc-
tion used for selling sponsored search advertisements. In this
paper we consider the revenue of this auction. Most previ-
ous work of GSP focuses on envy free equilibria of the full
information version of this game. Envy-free equilibria are
known to obtain at least the revenue of the VCG auction.
Here we consider revenue in equilibria that are not envy-
free, and also consider revenue in the Bayesian version of
the game.

We show that, at equilibrium, the GSP auction obtains at
least half of the revenue of the VCG mechanism excluding
the payment of a single participant. This bound is tight,
and we give examples demonstrating that GSP cannot ap-
proximate the full revenue of the VCG mechanism either in
the full information game, or in the Bayesian version (even
if agent values are independently drawn from identical uni-
form distributions). We also show that the GSP revenue
approximates the VCG revenue in the Bayesian game when
the click-through rates are well separated.

We also consider revenue-maximizing equilibrium of GSP in
the full information model. We show that if click-through
rates satisfy a natural convexity assumption, then the revenue-
maximizing equilibrium will necessarily be envy-free. In par-
ticular, it is possible to maximize revenue and social welfare
simultaneously. On the other hand, without this convex-
ity assumption, we demonstrate that revenue may be max-
imized at a non-envy-free equilibrium that generates a so-
cially inefficient allocation.
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1. INTRODUCTION
The sale of sponsored search advertising space is a primary
source of revenue for Internet companies, and responsible for
billions of dollars in annual advertising revenue [5]. Given
the importance of this market for services on the Internet,
it is crucial to choose a good mechanism. The General-
ized Second Price (GSP) auction is the premier method by
which sponsored search advertising space is sold; it is cur-
rently employed by Google, Bing, and Yahoo. However, use
of the GSP auction is not universal: the classical VCGmech-
anism was recently adopted by Facebook for its AdAuction
system [10]. In fact, Google also considered switching its
advertising platform to a VCG auction some years ago, but
eventually decided against it [17]. This apparent tension
begs the question of how these mechanisms compare. There
are many factors in comparing possible mechanisms: The
welfare of three distinct user groups (the experience of the
searchers, the welfare of advertisers, and the revenue of the
auction) are all important considerations, as well as the sim-
plicity of the auction design. In this paper, we consider the
comparison from the point of view of the seller and compare
the revenue properties of the GSP and VCG auctions.

Let us first briefly describe a simple model of the market and
the two auctions we consider. In sponsored search, a user
makes a query for certain keywords in a search engine and is
presented with a list of relevant advertisements in addition
to organic search results. If the user clicks on an adver-
tisement, the advertiser pays a fee to the search provider;
this is known as the “pay-per-click” pricing model. There
are multiple possible positions (or “slots”) in which an ad
may appear, and the probability that a user clicks an ad
depends on its slot: ads closer to the top of the page are
likely to receive more clicks. In the simplest model, we have
a click-through rate (CTR) associated with each slot (where
a higher ad slot will have a larger click-through rate), where
the CTR of a slot is the probability of getting a click for
an advertisement in that position. The search engine must
therefore determine which ads to place where, and determine



a price per click for each slot. This is done via an auction
in which advertisers make bids - the advertiser’s maximum
willingness to pay per click. Bids are used by the search
engine to determine ad placements and prices. The mecha-
nism used by Google, Bing, and Yahoo add variations to this
basic scheme, such as adjusting the prices using ad quality,
using a reserve price, and budgets, etc. In this paper, we
will consider a game theoretical model of auctions without
budgets, and will assume all ads have the same quality for
simplicity of presentations.

The VCG and GSP mechanisms differ in the way in which
the aforementioned auction is resolved. In both auctions, ad-
vertisers are assigned slots in order of their bids, with higher
bidders receiving slots with higher CTRs. The two auctions
differ in their payment schemes. In VCG, each agent pays
an amount equal to his externality on the other agents: the
decrease in the total welfare of all other agents caused by
the presence of this advertiser. By contrast, in GSP each
advertiser simply pays a price per click equal to the next
highest bid. The VCG auction has the strong property of
being truthful in dominant strategies. The GSP auction
is not truthful, and is therefore prone to strategic bidding
behaviour. Indeed, strategic manipulation of bids is well-
documented in historical GSP bidding data [4].

Since the VCG mechanism is truthful, the revenue of VCG
is simply the revenue generated when all bidders declaring
their values truthfully. If bidders declare their values truth-
fully in a GSP auction, GSP generates strictly more rev-
enue than VCG. However, rational agents may not declare
their values truthfully when participating in a GSP auction.
Thus, when studying the revenue of GSP, we consider the
revenue generated at a Nash equilibrium; that is, a profile
of bidding strategies such that no advertiser can improve his
utility by unilaterally deviating. Our goal, then, is a com-
parison between the revenue of the VCG auction and the
revenue of GSP at equilibrium. Note that since there will
not be a unique Nash equilibrium of GSP in general, there
may be many possible revenue amounts generated by GSP.

This basic model of the GSP auction was first introduced by
Edelman et al [5] and Varian [18]. Both papers consider a
more restrictive notion of equilibrium than Nash, which they
call envy-free or symmetric equilibrum respectively. They
show that all envy-free equilibria are efficient and generate
revenue at least as much as VCG. Both [5] and [18] present
informal arguments to support the equilibrium selection for
this class of equilibria, but there is no strong theoretical
model that explains this selection [3, 7]. Further, the notion
of envy-free equilibria applies only in the full information
game. In fact [9] shows that an efficient equilibrium may not
exist in the Bayesian game (not even when the valuations
are drawn from identical uniform distributions). For the
broader class of all Nash equilibria, the revenue properties
of GSP are not understood. The primary focus of this paper
is to study the revenue of the GSP auction, in relation to
VCG, over the set of all Nash equilibria (including inefficient
ones). We ask: how is the revenue of GSP affected if one
cannot assume that agents necessarily converge to an envy-
free equilibrium?

In sections 3 and 5 we will consider the full information

game. For many keywords the search auction is repeated
many times each day. In general, the repeated nature of this
auction allows for complex strategic interactions. However,
agents can be predicted to infer each others’ bidding prefer-
ences over time, and thus we can approximate the general
behaviour by assuming that players converge to a stationary
equilibrium. If one assumes that, in fact, bidders learn each
others’ values over time, then results in a full-information
Nash equilibrium of the one-shot game.

In section 4 we consider the Bayesian version of this game.
For many keywords, the ability of a player to exactly predict
his opponents types is impaired. Due to factors, such as
the budgets, the algorithms used to compute quality factors
(which depend on many characteristics of each query, such as
origin, time, search history of the user), and the underlying
ad allocation algorithm, each auction is different, even when
it is triggered by the same search term. To capture this
measure of uncertainty, we will also consider equilibria in a
Bayesian partial information model.

Results. We begin by considering lower bounds on the rev-
enue generated by GSP. One might wish to bound the rev-
enue of GSP with respect to the revenue of VCG, but we
demonstrate that the revenue of GSP at equilibrium may be
arbitrarily less than that of VCG. However, we can bound
the revenue of GSP with respect to a related benchmark:
we prove that at any Nash equilibrium, the revenue gener-
ated by GSP is at least half of the VCG revenue, excluding
the single largest payment of a bidder. Thus, as long as the
VCG revenue is not concentrated on the payment of a single
participant, the worst-case GSP revenue approximates the
VCG revenue to within a constant factor. Furthermore, this
result also holds when an arbitrary reserve price is set upon
the sale of a slot. We also provide an example illustrating
that the factor of 2 in our analysis is tight.

One might hope that the gap between GSP and VCG rev-
enue is an artifact of agents having very different values,
or an artifact of the full-information setting. To the con-
trary, we demonstrate that this gap is essential in a broad
setting: even in a partial information setting where agents’
values are drawn independently from identical uniform dis-
tributions, the gap between the VCG revenue and GSP rev-
enue at Bayesian-Nash equilibrium can be arbitrarily large.
On the other hand, if the slot CTRs satisfy a certain well-
separatedness condition - namely that the CTRs of adjacent
slots differ by at least a certain constant factor - then we
prove that GSP does obtain a constant fraction of the VCG
revenue even in settings of partial information, extending a
result of Lahaie [11] who considered welfare under this as-
sumption on the CTRs. This result holds even without the
assumption that agents avoid dominated strategies, as long
as there are at least three participants in the auction.

We then turn to an analysis of the maximum revenue attain-
able by the GSP mechanism. We demonstrate that there can
exist inefficient, non-envy-free equilibria that obtain greater
revenue than any envy-free equilibrium. However, we prove
that if CTRs are convex, meaning that the marginal increase
in CTR is monotone in slot position, then the optimal rev-
enue always occurs at an envy-free equilibrium. This im-



plies that when click-through rates are convex, the GSP
auction optimizes revenue at an equilibrium that simulta-
neously maximizes the social welfare. We feel that the con-
vexity assumption is quite natural; note that it is weaker
than the common assumption that CTRs degrade by a con-
stant factor from one slot to the next.

Related Work. There has been considerable amount of work
on the economic and algorithmic issues behind sponsored
search auctions – see an early survey of Lahaie et al [12]
for an overview. The GSP model we adopt is due to Edel-
man et al [5] and Varian [18]. Both papers consider a more
restrictive notion of equilibrium than Nash. Edelman et al
calls it envy-free equilibrium and Varian calls it symmetric
equilibrium. Both authors show that this class of equilibria
produce always optimal social welfare and revenue at least
as good as the revenue of VCG.

Varian [19] shows how to compute the revenue optimal envy
free Nash equilibrium, however in his model, he allows agents
to overbid (which is dominated strategy, and we consider it
unnatural). We consider the question of maximum revenue
equilibria without the assumption of envy-free outcome. We
show that in general inefficient equilibria can generate more
revenue than efficient ones. However, under a natural con-
vexity assumption on click-through rates, we show that the
maximum revenue equilibrium is envy free, and hence effi-
cient, and show how to compute it efficiently.

Edelman and Schwarz [7] model the repeated auctions for
a keyword as a repeated game, and show using Myerson’s
optimal auction [16] that Nash equilibria that arise as a sta-
ble limit of rational play in this repeated game, cannot have
revenue more than the optimal auction: VCG with an ap-
propriately chosen reserve price. This leaves open the ques-
tion whether GSP may generate revenue much less than the
VCG auction, which is the main question we consider. How-
ever, unlike Edelman and Schwarz [7] we do not consider a
repeated game, as rational play in a repeated game is too
complex. Rather consider all stable outcomes of the auction,
not only those that arise as limits of rational repeated play,
which makes our results more general.

Gomes and Sweeney [9] study GSP as a Bayesian game – an-
alyzing the symmetric efficient equilibria of this auction us-
ing the Revenue Equivalence Theorem as the main tool. The
authors analyze the influence of click-through-rates in the
revenue and observe the counter-intuitive phenomenon by
which revenue decreases when click-through-rates increase.
They also discuss the influence of reserve prices.

Paes Leme and Tardos [14] showed that the social welfare of
GSP in equilibrium is within a constant factor of the optimal
social welfare – which is composed by the engine revenue and
the players total surplus. Lucier and Paes Leme [15] recently
improved the bound for the Bayesian version. In the present
work we tackle a natural question arising from their work:
even though GSP guarantees reasonably high welfare, how
does it break down in terms of revenue and total surplus?

There has been considerable work focused on studying rev-
enue properties of GSP either by analyzing real auction data

or by running simulations. Athey and Nekipelov [2] study
the effect of quality-factors uncertainty in the revenue. La-
haie [11], Lahaie and Pennock [13] and Feng et al [8] study
the effect of different ranking functions. Borgers et al [3]
study revenue for alternative auction formats. Edelman and
Schwarz [6] study the effect of reserve prices.

Our results compare the revenue of different mechanisms at
equilibrium. It is worth noting that the well-known revenue
equivalence theorem, which provides conditions under which
alternative mechanisms generate the same revenue at equi-
librium, does not apply in our settings. Revenue equivalence
requires that agents have values drawn from identical distri-
butions and the mechanisms generate the same outcome. As
a result, this equivalence does not apply in the full informa-
tion setting. For our result in the partial information setting
we also consider revenue properties of inefficient allocations,
while the VCG mechanism is efficient.

2. PRELIMINARIES
An AdAuctions instance is composed of n players and n
slots. Each player has a value vi for each click he gets and
quality factor γi. Slot j has click-through-rate αj . That
means that if player i is allocated in slot j, he gets γiαj

clicks in expectation. For the rest of the paper, we assume
that γi = 1 for clarity of exposition. Assume we number
players such that v1 ≥ v2 ≥ . . . ≥ vn and α1 ≥ . . . ≥ αn. Let
α = (α1, . . . , αn) be the CTR vector and v = (v1, . . . , vn)
be the type vector.

A mechanism for the AdAuctions problem has the following
form: Since valuations vi are private information, it begins
by eliciting some bid bi for the players, which works as his
“declared valuation”. We call b = (b1, . . . , bn) be the bid vec-
tor. Using the b and α, the mechanism chooses an allocation
π : [n] → [n] which means that player π(j) is allocated to
slot j, and a price vector p = (p1, . . . , pn), where pi is the
price that player i pays for click. Player i then, experiences
utility ui(b) = ασ(i)(vi − pi), where σ(i) = π−i(i).

The social welfare generated by the mechanism is given by
SW (v, π) =

∑

i
αivπ(i) and the revenue is given by R(b) =

∑

i
ασ(i)pi. We focus on two mechanisms: GSP and VCG: in

both mechanisms, the players are ordered by their bids, i.e,
π(j) is the player with the jth largest bid, but they differ in
the payments charged. GSP mimics the single-item second
price auction by charging each player the bid of the next
highest bidder, i.e:

pi = bπ(σ(i)+1)

if σ(i) < n and zero otherwise. VCG charges each player
the externality it imposes on the other players , which is:

pVCG
i =

1

ασ(i)

n
∑

j=σ(i)+1

(αj−1 − αj)bπ(j)

If the bidders truthfully declare their valuation in both VCG
and GSP, then GSP generates strictly more revenue, as the
revenue associated with player i in VCG is

pV CG
i ασ(i) =

n
∑

j=σ(i)+1

(αj−1 − αj)bπ(j) ≤ ασ(i)bσ(i)+1



which is the GSP price paid by player i. VCG has the re-
markable property that regardless of what the other players
are doing, it is a weakly dominant strategy for player i to
report his true valuation. The resulting outcome of VCG is
therefore social-welfare optimal and the revenue is:

RV CG(v) =
∑

i

∑

j>i

(αj−1 − αj)vj =

n
∑

i=2

(i− 1)(αi−1 − αi)vi

GSP, however, doesn’t have this property. In general, the
bid profile b = v is not an equilibrium, i.e., there exists a
player i that can improve his utility by misreporting his true
valuation. We are interested in the set of bid profiles that
constitute a Nash equilibrium, i.e.:

ui(bi,b−i) ≥ ui(b
′
i,b−i),∀b

′
i ∈ [0, vi]

We assume for the rest of this paper that players don’t over-
bid, i.e., bi ≤ vi, since bidding bi > vi it is a weakly domi-
nated strategy (see [14]).

We say that an equilibrium is efficient if it maximizes social
welfare, i.e., which happens when π(i) = i for each slot i.

We will also consider this comparison in the presence of a re-
serve price. Let VCGr be the VCG mechanism with reserve
price r, where we discard all players with bids smaller then r
and run the VCG mechanism on the remaining players, who
then pay price per click max{pi, r}. In the analogous vari-
ant of the GSP mechanism, which we call GSP with reserve
price r (GSPr), we also discard all players with bids smaller
then r, the remaining players are allocated using GSP, and
the last player to be allocated pays price r per click.

2.1 Equilibrium hierarchy for GSP
Edelman, Ostrovsky and Schwarz [5] and Varian [18] showed
that the full information game always has a Pure Nash equi-
librium, and moreover, there is a pure Nash equilibrium with
same outcome and payments as VCG. And this happens
when players bid:

bVi =
1

αi−1

n
∑

j=i

(αj−1 − αj)vj

The authors also define a class of equilibria called envy-free

equilibria or symmetric. This is the class of bid profiles
b such that:

ασ(i)(vi − bσ(i)+1) ≥ αj(vi − bj+1)

It is easy to see that the condition above implies that the
bid profile is a Nash equilibrium (but doesn’t capture all
possible Nash equilibria). The bid profiles that are envy-
free are always efficient and that the generated revenue is
greater than or equal to that in VCG, i.e, for b envy-free,
R(b) ≥ RV CG(v).

Although all envy-free equilibria are efficient, there are ef-
ficient equilibria that are not envy-free, as one can see for
example in Figure 1, as well as inefficient equilibria. One
can illustrate them as:
{

VCG
outcome

}

⊆

{

envy-free
equilibria

}

⊆

{

efficient
Nash eq

}

⊆

{

all
Nash

}

(1− α)v

(1− α)

v

(1− α)v (1− α) v

b1

b2

Figure 1: Equilibria hierarchy for GSP for α =
[1, 1/2], v = [1, 2/3]: the strong blue dot represents

the VCG outcome, the pattern region the envy-free

equilibria, the blue region all the efficient equilibria

and the red region the inefficient equilibria

2.2 Bayesian setting
The Bayesian setting models the uncertainty in the game
and the fact the players know their own valuation but only
know a distribution on the other players’ valuations. In this
model the values of the players are not fixed, but rather
are random variables. The type vector v is drawn from
a known distribution F . Each player learns his own value
vi and just knows the distribution of v−i. After learning
his own value vi, the player chooses a bid bi(vi) to play in
the AdAuctions game. The strategies are therefore bidding
functions bi : R+ → R+, and we will continue to assume
that player do not overbid, i.e., bi(v) ≤ v. A set of bidding
functions is a Bayesian Nash equilibrium if:

E[ui(bi(vi),b−i(v−i))|vi] ≥ E[ui(b
′
i,b−i(v−i))|vi],∀i, vi

.

3. REVENUE IN FULL INFORMATION GSP
The goal of this section is to compare the revenue proper-
ties of GSP and VCG. Unfortunately, there are no universal
constants c1, c2 > 0 such that for every AdAuctions instance
α,v and for all equilibria b of GSP it holds that:

c1 · R
V CG(v) ≤ R(b) ≤ c2 · R

V CG(v)

In fact, GSP can generate arbitrarily more revenue than
VCG and the other way round, i.e., VCG can generate arbi-
trarily more revenue than GSP. A single item auction serves
as a example for the first inequality: a single-item second
price auction has many equilibria, some generating positive
revenue and some generating zero. For example, consider
two players with α = [1, 0], v = [2, 1]. Then VCG generates
revenue 1, but GSP has the Nash equilibrium b = [2, 0] that
generates no revenue.

To give a bad example for the second inequality, consider
the following instance: α = [1, 1 − ǫ], v = [ǫ−1, 1]. Notice
that the revenue produced by VCG is ǫ, while GSP has the
equilibrium b = [1, 1] generating revenue 1.

However, we will prove that the GSP revenue cannot be



much less than the VCG revenue in some sense. The main
difficulty is to extract the revenue from the first player, a
difficulty that is common through the revenue literature.
Motivated by this, we consider the following benchmark:

B(v) =
n
∑

i=2

pV CG
i ασ(i)

=
n
∑

i=2

∑

j>i

(αj−1 − αj)vj =
n
∑

i=2

(i− 2)(αi−1 − αi)vi

which is the VCG revenue from players 2, 3, . . . , n. Next,
we show that the GSP revenue is reasonably high against
this benchmark, i.e., unless VCG gets most of its revenue
from the first player, GSP revenue will be within a constant
factor of VCG revenue.

Theorem 1 Given an AdAuctions instance α,v, then for
any Nash equilibrium of GSP, then R(b) ≥ 1

2
B(v), and this

bound is tight.

We prove this theorem in two steps: first we define the con-
cept of up-Nash equilibrium for GSP, then we show that all
innefficient Nash equilibria can be written as an efficient up-
Nash equilibrium. In the second step, we show the bound
above for all efficient up-Nash equilibria.

Definition 2 Given a bid profile b, we say it is up-Nash

for player i if he can’t increase his utility by taking some slot
above, i.e.:

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j)),∀j < σ(i)

Analogously, we say that b is down-Nash for player i if he
can’t increase his utility by taking some slot below, i.e.:

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j+1)),∀j > σ(i)

A bid profile is up-Nash (down-Nash) if it is up-Nash (down-
Nash) for all players i. Clearly a bid profile b is a Nash
equilibrium iff it is both up-Nash and down-Nash.

Lemma 3 If a bid profile b is a Nash equilibrium, then the
bid profile b′ where b′i = bπ(i) is up-Nash.

Proof. We show that if b is a bid profile (with corre-
sponding allocation π) such that:

• players j = k + 1, . . . , n are such that σ(j) = j and
they satisfy up-Nash

• players j = 1, . . . , k satisfy Nash (i.e. both up-Nash
and down-Nash)

• σ(k) < k

then we define b′ by swapping the bids of players k and π(k),
that is setting b′i = bi for i 6= k, π(k), b′k = bπ(k), b

′
π(k) = bk.

We claim to get a profile that is up-Nash for players k, . . . , n
and Nash for the remaining players. Then applying this
construction for k = n, . . . , 2 gives us the desired result.

Since each slot continues to get the same bid, we just need
to check three things: the up and down-Nash inequalities
for player π(k) and the up-Nash inequality for player k.

Player π(k) now gets slot σ(k). This players doesn’t want
to get any slot j > σ(k) since in the bid-profile b player k
with lower value didn’t want to get these slots, hence we
have:

ασ(k)(vk − bπ(σ(k)+1)) ≥ αj(vk − bπ(j+1))

and since vπ(k) ≥ vk then:

ασ(k)(vπ(k) − bπ(σ(k)+1)) ≥ αj(vπ(k) − bπ(j+1)) (1)

To see that he doesn’t want to take any slot j < σ(k), notice
that π(k) didn’t want to move to a higher slot in b:

αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) − bπ(j))

That, combined with equation (1) for j = k stating that
π(k) prefers slot σ(k) to k gives us the up-Nash inequality.

Player k now gets slot k. For the up-Nash inequality for
k, we need to show that he doesn’t want to take any slot
j < k. Notice that in b π(k) had slot k and didn’t want to
switch to a higher slot:

αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) − bπ(j))

Now, since vπ(k) ≥ vk, we have:

αk(vk − bπ(k+1)) ≥ αj(vk − bπ(j))

Proof of Theorem 1 : Given any Nash equilibrium b,
consider the bid profile b′ of the lemma, which is an up-Nash
equilibrium by the last lemma and player k occupies slot k.
We use the fact that player k doesn’t want to take slot k−1:

αk(vk − b′k+1) ≥ αk−1(vk − b′k−1)

We can rewrite that as:

αk−1b
′
k−1 ≥ (αk−1 − αk)vk + αkb

′
k+1

we have αk ≥ αk+1, therefore:

αk−1b
′
k−1 ≥

∑

j∈k+2N

(αj−1 − αj)vj

where k + 2N = {k, k + 2, k + 4, . . .}. Now, we can bound:

R(b) = R(b′) =
∑

k

αkb
′
k+1 ≥

∑

k

αk+1b
′
k+1 ≥

≥
∑

k

∑

j∈k+2+2N

(αj−1 − αj)vj ≥

≥
n
∑

k=2

k − 2

2
(αk−1 − αk)vk =

1

2
B(v)

To show that this bound is tight, consider the following ex-
ample with n slots and n players parametrized by δ:

α = [1, 1, 1, 1, . . . , 1, 1− δ, 0]



v = [1, 1, 1, 1, . . . , 1, 1, δ]

b = [δ, δ, δ, δ, . . . , δ, δ, 0]

where R(b) = (n − 2)δ + δ(1 − δ) and RV CG(v) = (2δ −

δ2)(n− 3) + δ(1− δ). Therefore: limn→∞
R(b)
B(v)

= 2− δ and

it tends to 2 as δ → 0.

Notice that those bounds also carry for the case where there
is a reserve price r. We compare against a slightly modified
benchmark: Br(v) which is the revenue VCGr extracts from
players 2, . . . , n.

Corollary 4 Let b be a Nash equilibrium of the GSPr game,
then R(b) ≥ 1

2
Br(v).

Proof. We can assume wlog that vi, bi ≥ r (otherwise
those players don’t participate in any of the auctions). We
can define an upper-Nash bid profile b′ as in Lemma 3. Now,
notice that all players in b′ are paying at least r per click.
We can divide the players in two groups: players 1 . . . k are
paying more than r in VCGr and player k+1 . . . n are paying
exactly r. It is trivial that for the players k + 1 . . . n we
extract at least the same revenue under VCGr then under
GSPr. For the rest of the players we need to do the exact
same analysis as in the proof of Theorem 1.

4. REVENUE IN THE BAYESIAN SETTING
We showed in the full information setting that there are
AdAuctions instances α,v such that VCG generates positive
revenue and there are GSP equilibria generating no revenue.
One might ask if this can also happen in the Bayesian setting
or if assuming, say iid players with some sort of well-behaved
valuation distribution will eliminate the problem. Unfortu-
nately, this is not the case.

Example. We show one example in the Bayesian set-
ting where VCG generates positive revenue and GSP has
a Bayesian-Nash equilibrium that generates zero revenue.
Consider three players with iid valuations vi ∼ Uniform([1, 2])

and three slots with α = [1, 0.5, 0.5]. Let v(i) be the ith

largest valuation (which is naturally a random variable de-
fined by v). So, we know that:

E[RV CG(v)] = E[0.5v(2)] > 0

Now, consider the following equilibrium of GSP: bi(vi) = 0
for i = 2, 3 and b1(v1) = v1. Clearly player 1 is in equilib-
rium. To see that players i = 2, 3 are in equilibrium, suppose
player i valuation is vi > 0 and notice that his current utility
is 0.5vi where if he changed their bid to b > 0, his utility
would be:

E[ui(b
′, b−i)|vi] = 0.5vi + 0.5viP(v1 ≤ b′)−

∫ b′

0

v1dP(v1) =

= 0.5vi + 0.5vi(b
′ − 1)−

(b′)2 − 1

2
≤

≤ 0.5vi = E[ui(b)|vi]

for all bids b′ ≥ 1 (notice that b′ < 1 doesn’t change his
utility since b1 ≥ 1 always).

The intuition behind this example is that players would like
to stay away for slot 2 if its price is positive: so they want

to go either for slot 1, since it has more clicks, or for slot 3
since it is cheaper. This generates this kind of anomaly.

The main result of this section is that we can avoid the
anomaly described above if we assume that the slot click-
through-rates are well separated, in the sense of [11]. We say
that click-through-rates are δ-well separated if αi+1 ≤ δαi

for all i.

Lemma 5 If click-through-rates are δ-well separated, then
bidding bi(vi) < (1− δ)vi is dominated by playing (1− δ)vi.

Proof. If a player is playing bi < (1−δ)vi, if he increases
his bid to b′i = (1− δ)vi then with some probability he still
gets the same slot (event S) and with some probability he
gets a better slot (event B). Then clearly E[ui(bi, b−i)|vi] ≤
E[ui(b

′
i, b−i)|vi] since the expectation conditioned to S is the

same and conditioned to B it can only increase by changing
the bid to b′i. To see that, let απ(i) be the slot player i gets
under bi and απ′(i) the slot he gets under b′i. Conditioned

on B we know that απ′(i) ≥ δ−1απ(i), and this generates
revenue at least απ′(i)(vi − b′i), while the revenue with bid
bi was at most απ(i)vi, which implies the claim:

E[ui(bi, b−i)|vi, B] ≤ E[απ(i)vi|vi, B] ≤ E[δαπ′(i)vi|vi, B] =

= E[απ′(i)(vi − (1− δ)vi)|vi, B] ≤

≤ E[ui(b
′
i, b−i)|vi, B]

If one eliminates the strategies bi(vi) < (1 − δ)vi from the
players strategy set, then it is easy to see that under any
Bayesian-Nash equilibrium eliminating those dominated strate-
gies, EvR(b(v)) ≥ (1− δ)EvR

V CG(v).

Corollary 6 If click-through-rates are δ-well separated, and
all players play un-dominated strategies, than

R(b) ≥ (1− δ)RV CG(v)

Next, we consider whether it is really necessary to eliminate
dominated strategies, as players may not know what are
all their dominated strategies. If we allow players to use
dominated strategies, then we might have equilibria with
very bad revenue compared to VCG, as one can see in the
following example:

Example. Consider two players with iid valuations vi ∼
Uniform([0, 1]) and two slots with α = [1, 1− ǫ]. Then VCG
generates revenue E[RV CG(v)] = E[ǫmin{v1, v2}] = O(ǫ).
However, consider the following equilibrium:

b1(v1) =

{

ǫ(1− δ), v1 ≥ ǫ(1− δ)

ǫv1, v1 < ǫ(1− δ)

b2(v2) =











ǫ, v2 ≥ 1− δ

ǫ2(1− δ), ǫ(1− δ) ≤ v2 < 1− δ

ǫv2, v2 < ǫ(1− δ)

It is not hard to check that this is an equilibrium. In fact,
for two player GSP in the Bayesian setting, playing (α1 −



α2)vi/α1 is a best reply - and any bid that gives the player
the same outcome is also a best reply. So, in the above
example, one can simply check that the bids generate the
same utility as bidding bi(vi) = ǫvi. This example generates
revenue ER(b) = O(ǫ(ǫ + δ)), so taking δ = O(ǫ) in the
above example give us O(ǫ2) revenue.

The following Theorem is a version of Corollary 6 that doesn’t
depend on eliminating dominated strategies:

Theorem 7 With n players with iid valuations vi and δ-
well separated click-through-rates, then for all (non-overbidding)
Bayesian-Nash equilibria b:

ER(b) ≥
n− 2

n
(1− δ)ERV CG(v)

Proof. Given a profile b in Bayesian-Nash equilibrium
and fixed two players i and j, we have that:

Pv∼F [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] = 0

in fact, suppose the contrary. Then there is ǫ′ ≪ ǫ such that
if we take F ′ = F |[v0−ǫ′,v0+ǫ′] then:

Pv∼F ′ [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] > 0

For ǫ′ small enough v0 = v0 − ǫ and some ǫ′′ < ǫ, then:

Pv∼F ′ [bi(v) < (1− δ)v0 − ǫ′′, bj(v) < (1− δ)v0 − ǫ′′] > 0

Now pick vi, vj in this interval such that Pv∼F ′ [bi(v
i) ≤

bi(v) < (1 − δ)v0] > 0 and the same for j. By lemma 5,

playing (1 − δ)vi is a best response, then for player j for
example, it can’t be the case that any of the other players
play between bj(v

j) and (1− δ)vj with positive probability.
Therefore:

Pv∼F ′ [bj(v) ∈ [bi(v
i), (1− α)vi)] = 0

Pv∼F ′ [bi(v) ∈ [bj(v
j), (1− α)vj)] = 0

but notice this is a contradiction.

Now, we can think of the procedure of sampling v iid from
F in the following way: sample v′′i ∼ F iid , let v′i be the
sorted valuations, and then apply a random permutation
τ ∈ Sn to the values so that vi = v′τ(i). Notice that v is

iid and now, notice that with ≥ 1 − 2
n

probability, v′i and
v′i+1 will generate (1 − δ)v′i and (1− δ)v′i+1 bids producing
(1− δ)αiv

′
i+1 revenue, therefore:

ER(v) ≥ E

∑

i

(

1−
2

n

)

(1−δ)αiv
′
i+1 ≥

n− 2

n
(1−δ)ERV (v)

5. REVENUE IN THE GSP HIERARCHY
Last section was mainly concerned in comparing the VCG
outcome (which can be emulated by one particular equilib-
rium of GSP) with all possible equilibria of GSP. In section
3, we showed that there are equilibria in GSP that can gen-
erate arbitrarily more and arbitrarily less revenue than the
VCG outcome. Now, we come back to the full information
setting to compare the revenue extraction properties of the

different classes of GSP equilibria. Can one equilibrium class
generate more or less revenue than other?

This question of comparing the VCG outcome and envy-free
equilibria was answered by [5], that show that the revenue
in all envy-free equilibria is at least as good as the VCG
outcome (i.e. the VCG outcome is the envy-free equilibria
generating smallest possible revenue). It is easy to see that
envy-free equilibria can generate arbitrarily more revenue
than the VCG outcome - for example, when we showed that
GSP can generate arbitrarily more revenue than VCG, the
GSP equilibrium was envy free. Varian [19] shows how to
compute the revenue optimal envy free Nash equilibrium, if
agents are allowed to overbid. Here we consider the question
of maximum revenue equilibria without the assumption of
envy-free outcome, and do not allow overbidding.

5.1 Envy-free and efficient equilibrium
As shown in the example of Figure 1, there are efficient equi-
libria that generate arbitrarly less revenue then any envy-
free equilibrium. For the other direction we show that:

Theorem 8 For any AdAuctions instance such that αi >
αi+1,∀i, all the revenue-optimal efficient equilibria are envy-
free. Moreover, we can write the revenue optimal efficient
equilibrium explicitly as function of α,v.

Proof. Given an efficient equilibrium b, if it is not envy-
free, we show that we can improve revenue by slightly in-
creasing one of the bids. If the equilibrium is not envy-free,
there is at least one player that envies the player above, i.e.:

αi(vi − bi+1) < αi−1(vi − bi)

As pointed out in [5], if an efficient equilibrium is such that
no player envies the above slot (i.e. no player i wants to
take the above slot i − 1 by the price per click player i is
paying) then the equilibrium is envy-free. Take i to be the
player with smallest index that has this property.

Now, consider the bid profile b′ such that b′j = bj for j 6= i
and b′i = bi + ǫ. We need to check the Nash inequalities for
player i− 1 still hold for a sufficiently small ǫ > 0. In other
words, we need to show that no Nash inequality for player
i− 1 holded with equality for b.

For slots j > i− 1, notice that:

αj(vi − bj+1) ≤ αi(vi − bi+1) < αi−1(vi − bi)

where the first is a standard Nash inequality and the second
is the hypothesis that player i envies the above slot. Now,
since vi−1 > vi we have:

αj(vi−1 − bj+1) < αi−1(vi−1 − bi)

For slots j < i− 1, we use the fact that player i is the first
envious player. Also, wlog, we can assume player 1 bids v1.
Therefore we need to prove it just for j = 2, 3, . . . , k − 1 :

αi−1(vi − bi) ≥ αj(vi − bj+1) > αj(vi − bj)

where the first inequality comes from the fact that player
i − 1 doesn’t envy any player j above him and the second
inequality comes from the fact that bj > bj+1, otherwise the
player in slot j would envy the player in slot j − 1.



In fact, we can give a more explicit proof of Theorem 8 by
showing the bid profile that generates largest revenue and
verifying it is an envy-free equilibrium. Given (α,v) define
a bid profile b in a bottom up fashion:

bn = min

{

vn,
αn−1 − αn

αn−1
vn−1

}

bi = min

{

vi,
αi−1 − αi

αi−1
vi−1 +

αi

αi−1
bi+1

}

,∀i = n−1, . . . , 1

Now, we need to show that (i) it is in Nash equilibrium; (ii)
it is envy free and (iii) no efficient Nash has higher revenue
than the one above. Begin by noticing that if b is Nash,
then player i− 1 doesn’t want to take the slot i and there-
fore αi−1(vi−1 − bi) ≥ αi(vi−1 − bi+1) and this is satisfied
by definition by the bid vector presented. Notice also that
it gives an upper bound on the maximum revenue in an effi-
cient equilibrium and this bound is achieved exactly by the
bid profile defined above.

Furthermore, for all j ≤ i − 1 we have αi−1(vj − bi) ≥
αi(vj − bi+1) therefore by composing this expression with
different values of i and j, it is straightforward to show that
no player can profit by decreasing his bid. We prove that
no player can profit by overbidding as a simple corollary of
envy-freeness. For that, we need to prove that:

αi(vi − bi+1) ≥ αi−1(vi − bi)

if bi = vi than this is trivial. If not, then substitute the
expression for bi and notice it reduces to vi−1 ≥ vi. Now,
this proved local envy-freeness, what implies that no player
wants the slot above him by the price he player above him
is paying. This in particular implies that no player wants to
increase his bid to take a slot above.

5.2 Cost of efficiency
Here, we analyze the relation between revenue and efficiency
in GSP auctions. One might ask if it is possible to have opti-
mal efficiency and optimal revenue in the same equilibrium.
In other words, among all GSP equilibria is the revenue-
maximizing one efficient? We give a negative answer to this
question, showing that for some AdAuction instances, we
can increase revenue by selecting an innefficient equilibrium.
However, we give a natural sufficient condition so that the
revenue-optimal equilibrium is efficient.

We define the cost of efficiency for a given click-through-rate
as the ratio:

CoE(α) = max
v

maxb∈Nash(α,v) R(b)

maxb∈EffNash(α,v) R(b)

where Nash is the set of all bid profiles in Nash equilibrium
and EffNash is the set of all efficient Nash equilibrium. In
figure 2 we calculate for each α = [1, α2, α3], where αi is
an integer multiple of 0.01 we calculate the CoE(α). For
all α calculated, we got 1 ≤ CoE(α) < 1.1. The color of
(α1, α2) in the graph corresponds to CoE(1, α2, α3) where
blue represents 1 and red represents 1.1. By solving a con-
strained non-linear optimization problem, one can show that
the worst CoE for 3 slots is 1.09383.

Figure 2: Cost of efficiency for α = [1, α2, α3]: in the

plot, blue means 1.0 and red means 1.1.

Example. One example where an innefficient equilib-
rium generates strictly more revenue then all efficient ones
is α = [1, 2

3
, 1
6
] and v = [1, 7

8
, 6
8
]: the best efficient rev-

enue is given by 1
3
+ 7

8
≈ 1.20833 (which can be calculated

using the formula in the last section), but for the alloca-
tion π = [2, 1, 3] there is an equilibrium generating revenue:
1.21528.

A remarkable fact we can observe from the graph is that
when α1 − α2 ≥ α2 − α3, then CoE(α) = 1, what moti-
vates us to look at AdAuctions instances with convex click-
through-rates, i.e., αi−αi+1 ≥ αi+1−αi+2. Notice that this
is a natural assumption, since most models for CTR follow
convexity, as exponential CTR as in [11], Markovian users
[1], ... The main theorem is this section shows that this is a
sufficient condition for having CoE = 1:

Theorem 9 If click-through-rates α are convex (i.e. αi −
αi+1 ≥ αi+1 −αi+2, ∀i), then there is a revenue maximizing
equilibrium that is also efficient.

Proof. Let b be the revenue maximizing Nash equilib-
rium, which can be calculated according to the formula in
the last section. Now, fix an allocation π and let b′ be an
equilibrium under allocation π. We say that b is saturated
for slot i if bi = vi. First we prove the theorem if no slot is
saturated in the maximum revenue equilibrium. This part
will be simpler and capture the main spirit of the proof.
Then we prove the general case, which is more technical.

Under the no-saturation assumption, then:

R(b) =
∑

i

αibi+1 =
∑

i

∑

j≥i

(αj − αj+1)vj (2)

Notice that we can see it is a dot product of two vectors



where one has elements of the for vi and other has elements
in the form αj −αj+1. Notice also that due to the convexity
assumption, we can think of it as a dot product of two sorted
vectors. Now, for b′, we can use the fact that no player in
slot i wants to take some slot j > i to bound:

R(b′) =
∑

i

αib
′
π(i+1) ≤

∑

i

∑

j≥i

(αj − αj+1)vm(π,i,j) (3)

where m(π, i, j) = max{π(i), π(i + 1), π(i + 2), . . . , π(j)}.
To see that, let k = i, i+ 1, . . . , i+ p be all the indices such
that m(π, i, k) = π(i). Now, notice that the player in slot i
doesn’t want to take slot i+ p+ 1, therefore:

αi(vπ(i) − b′π(i+1)) ≥ αi+p+1(vπ(i) − b′π(i+p+2))

so:

αib
′
π(i+1) ≤ αi+p+1b

′
π(i+p+2) + (αi − αi+p+1)vπ(i) =

= αi+p+1b
′
π(i+p+2) +

i+p
∑

j=i

(αj − αj+1)vm(π,i,j)

Now, we just apply recursion. Now, notice that equation (3)
can also be written as a dot product between two vectors of
type vi and αj − αj+1. If we sort the vectors, we see that
the (αj − αj+1)-vector is the same and the sorted vector of
vj for equation (3) is dominated by that of equation (2), in
the sense that it is pointwise smaller. To see that, simply
count how many times we have one of v1, . . . , vi appear in
both vectors for each index i. For equation (2) they appear
∑i

j=1 j times. For equation (3), they appear at most:

i
∑

j=1

1 +max{p;m(π(j, j + p)) ≤ i} ≤

i
∑

j=1

j

Since the (αj−αj+1)-vectors are the same in both equations,
the vi vector in the first equation dominates the order and in
the first equation both vectors are sorted in the same order,
then it must be the case that R(b) ≥ R(b′).

Case with saturations: Now, let b be the optimal efficient
equilibrium and let S ⊆ [n+ 1] be the set of saturated bids
and n+1 (consider a ”fake”player n+1 with bn+1 = vn+1 =
0), i.e., i ∈ S iff bi = vi. Let S(i) = min{j ∈ S; j > i}.

Given an allocation π, we wish to define an upper bound,
Rπ, on the revenue of a bid profile that induces allocation
π at equilibrium. To this end, we define

Bπ(j) =



















αS(j)−1vS(j) +
∑S(j)−2

i=σ(j)
(αi − αi+1)vm(π,σ(j),i)

if σ(j) ≤ S(j) − 1

αS(j)−1vS(j) − vj(αS(j)−1 − ασ(j))

if σ(j) ≥ S(j) − 1

We then define

Rπ =
∑

j

Bπ(j).

We claim that this is, indeed, an upper bound on revenue.
Moreover, this bound is tight for revenue at efficient equi-
libria (i.e. when π is the identity).

Claim 10 If bid profile b induces allocation π at equilib-
rium, then R(b) ≤ Rπ.

Claim 11 There exists an efficient equilibrium with revenue
Rid.

We want to argue that id is the permutation that maximizes
Rπ and therefore we can show that for all innefficient bid
profile b′ we have:

R(b′) ≤ Rπ ≤ Rid = R(b)

Consider some permutation π. Let j = max{k; π(k) 6= k}
and define a permutation π′ such that π′(k) = k for k ≥ j
and π′(k) = π(k) for k < σ(j) and π′(k) = π(k) + 1 for
σ(j) ≤ k < j. Essentially this is picking the last player that
is not allocated to his correct slot and bring him there. For
the other players. Now, if we prove that Rπ′ ≥ Rπ , then
we are done, since we can repeat this procedure many times
and get to id.

Claim 12 Rπ′ ≥ Rπ.

Proof of Claim 10 : We need to show that for all b′ in-
ducing allocation π, then ασ(j)b

′
σ(j)+1 ≤ Bπ(j). For σ(j) =

S(j)−1, we simply use the fact that b′σ(j)+1 = b′S(j) ≤ vS(j).
Now, for σ(j) < S(j)− 1 we simply use the same proof used
in the unsaturated case. For σ(j) > S(j) − 1, we use the
fact that player j doesn’t want to take slot j and therefore:

ασ(j)(vj−b′σ(j)+1) ≥ αS(j)−1(vj−b′S(j)−1) ≥ αS(j)−1(vj−vS(j))

since

b′S(j) ≤ min{vπ(1), . . . , vπ(S(j)−1)} ≤ vS(j)

and σ(j) > S(j)− 1 so one of the players with value ≤ vS(j)

must be among the first S(j)−1 slots. Reordering the Nash
inequalities above gives us the desired result.

Proof of Claim 11 : That is true simply by the formula
definining the optimal-revenue efficient-equilibrium in the
last section and the definition of saturation.

Proof of Claim 12 : Note first that Bπ(k) = Bπ′(k) for
all k > j. Moreover, for any k with σ(k) < σ(j), we will
have σ′(k) = σ(k). In this case, either S(k) < σ(k) in which
case Bπ′(k) = Bπ(k), or else

Bπ′(k) = αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i)

≥ αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)

= Bπ′(k).

It remains to consider k is such that σ(j) ≤ σ(k) ≤ j; that
is, those players k such that σ(k) 6= σ′(k). For each such



player, we will consider the difference between Bπ(k) and
Bπ′(k). First note that, for player j, we have

Bπ(j) −Bπ′(j)

=



αS(j)−1vS(j) +

S(j)−2
∑

i=σ(j)

(αi − αi+1)vm(π,σ(j),i)





−



αS(j)−1vS(j) +

S(j)−2
∑

i=σ′(j)

(αi − αi+1)vm(π′,σ′(j),i)





=

j−1
∑

i=σ(j)

(αi − αi+1)vj

For k 6= j, we claim that Bπ′(k) − Bπ(k) ≥ vj(ασ(k)−1 −
ασ(k)). We proceed by two cases. First, if S(k) ≤ σ(k), we
have

Bπ′(k)−Bπ(k) =
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ′(k))
)

−
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ(k))
)

= vk(ασ(k)−1 − ασ(k))

≥ vj(ασ(k)−1 − ασ(k))

Second, if S(k)− 1 > σ(k), then we have

Bπ′(k)−Bπ(k)

=



αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)





−



αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i)





= (αS(k)−2 − αS(k)−1)vm(π′,σ′(k),S(k)−2)

+

S(k)−3
∑

i=σ′(k)

vm(π′,σ′(k),i)[(αi − αi+1)− (αi+1 − αi+2)]

≥ vj(αS(k)−2 − αS(k)−1)

+

S(k)−3
∑

i=σ′(k)

vj [(αi − αi+1)− (αi+1 − αi+2)]

= vj(ασ(k)−1 − ασ(k))

Notice that we strongly use the fact that click-through-rates
are convex in the last inequality to ensure that (αi−αi+1)−
(αi+1 − αi+2) ≥ 0.

Therefore, taking the sum over all k with σ(j) ≤ σ(k) ≤ j,
we have

∑

k:σ(j)<σ(k)≤j

(Bπ′(k)−Bπ(k)) ≥

j−1
∑

i=σ(j)

vj(αi − αi+1)

= Bπ(j) −Bπ′(j)

So that
∑

k:σ(j)≤σ(k)≤j

(Bπ′(k)−Bπ(k)) ≥ 0.

Combining this with the fact that Bπ′(k) ≥ Bπ(k) for all k

with σ(k) < σ(j) or σ(k) > j, we conclude

Rπ′ =
∑

k

Bπ′(k) ≥
∑

k

Bπ(k) = Rπ

as desired.
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[14] R. P. Leme and Éva Tardos. Pure and bayes-nash price of
anarchy for generalized second price auctions. In FOCS10:
51st Annual IEEE Symposium on Foundations of
Computer Science, 2010.

[15] B. Lucier and R. Paes Leme. Improved social welfare
bounds for gsp at equilibrium (new title: Gsp with
correlated types). Technical report, arXiv.org, 2010.

[16] R. Myerson. Optimal auction design. pp 58-73,
Mathematics of Operations Research, Vol 1/6, pp 58-73,
1981.

[17] H. Varian. Mechanism design double feature. Talk at New
York Computer Science and Economics Day, October 2010,
2010.

[18] H. R. Varian. Position auctions. International Journal of
Industrial Organization, 2006.

[19] H. R. Varian. Online ad auctions. American Economic
Review Papers and Proceedings, 2009.


