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Abstract
We show that the class of preferences satisfying the Gross Substitutes condition
of Kelso and Crawford (1982) is strictly larger than the class of Endowed Assignment
Valuations of Hatfield and Milgrom (2005), thus resolving the open question posed by
the latter paper. In particular, our result implies that not every substitutable valuation

function can be “decomposed” into a combination of unit-demand valuations.

1 Introduction

The notion of Gross Substitutes (GS) for preferences over bundles of indivisible goods (Kelso
and Crawford, 1982) plays a critical role in a wide variety of theoretical and practical settings.
When agents’ preferences satisfy the GS condition, stable matchings are guaranteed to exist
in two-sided matching markets (Kelso and Crawford, 1982; Roth, 1984; Hatfield and Milgrom,
2005); competitive equilibria in exchange economies are guaranteed to exist (Bikhchandani
and Mamer, 1997; Gul and Stacchetti, 1999); the efficient, incentive-compatible Vickrey-
Clarke-Groves mechanism has many additional attractive properties in combinatorial auction
environments (Ausubel and Milgrom, 2006); and the resulting settings have many other
useful characteristics, such as tractable and well-behaved comparative statics. In contrast,
when some agents’ preferences do not satisfy the GS condition, these results typically do
not hold, substantially complicating both the theoretical analysis of such settings and the

practical design of markets for such allocation problems.!
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ITwo classes of settings in which many positive results hold despite the violations of the GS condition are
exchange economies with two complementary classes of substitutable goods (Sun and Yang, 2006, 2009) and



For this reason, the question of understanding what classes of preferences satisfy the
GS condition has direct practical and theoretical importance, and has attracted consider-
able attention in the literature, which proposed various alternative characterizations of the
condition as well as classes of preferences satisfying it.2 However, a question that has re-
mained open is whether the class of preferences satisfying the GS condition is limited to
those that can be “decomposed” into combinations of single-unit demands. Hatfield and
Milgrom (2005) formalized this question by introducing a rich class of preferences, based
on single-unit demands, that they called “Endowed Assignment Valuations” (EAV), showed
that all valuation functions in that class satisfy the GS condition, and posed the question of
whether this class exhausts the set of GS preferences.®> Miiller, Vohra, and de Vries (personal
communication; subsequently Miiller et al.) constructed an example of a GS valuation func-
tion that they conjectured does not belong to EAV, and showed that the results of matroid
theory imply a weaker version of this result (but not the actual result itself; see below for
details). We show that the valuation function constructed by Miiller et al. is in fact outside
of EAV, thus proving that the scope of GS is strictly larger than that of EAV. The main
step in the proof is to identify a property, “strong exchangeability,” that every EAV function
must satisfy. We then show that the valuation function in the example does not satisfy
this property. While the inspiration for the proof also comes from matroid theory (specif-
ically, the theory of strongly exchangeable matroids due to Brualdi (1969)), our exposition

is completely self-contained and involves only elementary mathematical arguments.

2 Setup

There is a finite set S of objects in the economy. An agent’s valuation function v : 2% — R
assigns a value to every subset of S. Without loss of generality, v(&) = 0. Also, valuation
functions are monotone: for any sets X and Y such that X C Y, v(X) <wv(Y).

For a vector of prices p € Rl and a bundle of objects X C S, denote by p(X) = Yoiex Di

the price of bundle X. The demand of the agent with valuation function v given prices p is

economies with agents who can both buy and sell goods, with selling goods being complementary to buying
other goods (Ostrovsky, 2008; Hatfield et al., 2013). In both of those settings, however, the preferences can
be “transformed” into those satisfying the GS condition (see, e.g., Section 3 of Sun and Yang, 2006, and
Section III.A of Hatfield et al., 2013), and these transformations are precisely what makes it possible to
achieve the positive results.

2See, e.g., Kelso and Crawford (1982); Gul and Stacchetti (1999); Reijnierse et al. (2002); Fujishige and
Yang (2003); Bing et al. (2004); Hajek (2008); Hatfield et al. (2012).

3Hatfield and Milgrom (2005, p. 927) say: “To the best of our knowledge, all of the substitutes valuations
that have been used or proposed for practical applications are included among the endowed assignment
valuations. Indeed, the question of whether all substitutes valuations are endowed assignment valuations is
an open one.”



the collection of bundles of objects that maximize the agent’s payoff, net of prices:

D(p) = argmax {o(X) = p(X)} .
Xcs
Note that for some price vectors p, the agent may be indifferent between two or more bundles
of objects, and in that case D(p) contains multiple bundles. For any price vector p, D(p)

contains at least one bundle (possibly the empty one, if prices are too high).

2.1 Gross Substitutes

Valuation function v satisfies the Gross Substitutes condition if raising the prices of some of

the objects does not decrease the demand for other objects. Formally,

Definition 1 Valuation function v satisfies the Gross Substitutes condition if for any pair
of price vectors p and p' such that p' > p, for any bundle X € D(p), there ezists bundle
X' € D(p) such that for all objects j € X such that p; = p;, we have j € X'.*

2.2 Endowed Assignment Valuations

The notion of Assignment Valuations (AV), due to Shapley (1962), can be described as
follows. Consider a firm that has a set of positions, J. There is a set of objects, S. An
object ¢ assigned to position j generates output «;;. The valuation of the firm for a set of
objects X is equal to the highest amount of output it can produce by matching some of the
objects in X to some positions in J (only one object can be matched to a position, and vice

versa, and some objects and positions can remain unmatched).> Formally,

Definition 2 Valuation function v over set S of objects is an Assignment Valuation if there

exists a set of positions, J, and a matriz o of dimension |S|x |J] such that for any set X C S,

v(X) = max Z Q%
z

i€X, jeJ
where z varies over all possible assignments of elements in X to elements in J.5

The notion of Endowed Assignment Valuations (EAV), due to Hatfield and Milgrom
(2005), extends AV as follows. Consider a firm that has a set of positions, J, and has already

o/

4Expression “p’ > p” in the definition means that for all i € S, p. > p;.

5Shapley (1962) talks about assigning “men” to “machines.” For consistency with the rest of our paper,
we talk about assigning “objects” to “positions” instead.

6That is, z;; € {0,1} for all i and j; >jeszij €{0,1} foralli € X5 and 37, v zi; € {0,1} for all j € J.



purchased a set of objects T, i.e., set T is that firm’s endowment. There is also a set of
objects, S, which the firm can purchase in addition to T". The valuation of the firm over set
S UT is an assignment valuation, as defined above. Then the incremental valuation of the

firm over bundles in S is an endowed assignment valuation. Formally:

Definition 3 Valuation function v over set S of objects is an Endowed Assignment Valua-
tion if there exists another set of objects, T, and an Assignment Valuation function w over
set SUT such that for all X C S, v(X) =w(X UT) —w(T).

Hatfield and Milgrom (2005) show that every endowed assignment valuation v satisfies
the GS condition, and also show that EAV is precisely the family of valuations that is
obtained by starting out with unit-demand valuations (i.e., values a;; of “matches” between
individual objects and individual positions) and then constructing richer valuations out of
these simple ones by repeatedly “merging” valuations together (e.g., “merging” two one-
position firms to obtain a two-position one) and using the “endowment” operation (as in
the transition from AV to EAV above).” Thus, if classes of GS and EAV preferences were
equal, that would imply that every GS valuation can be “decomposed” into a combination
of simple unit-demand valuations. Our main result shows that this is not the case: some GS

valuations cannot be decomposed in this fashion.

3 Main Result

Theorem 1 The class of Gross Substitutes valuations is strictly larger than the class of

Endowed Assignment Valuations.

The rest of this section contains the proof of Theorem 1. The proof proceeds as follows.
First, we identify a property, “strong exchangeability,” that every EAV function satisfies.
Second, we show that the valuation function constructed by Miiller et al. does not satisfy

this property, but does satisfy the GS condition.

Step 1: Strong Exchangeability

Definition 4 Valuation function v is strongly exchangeable if for every price vector p € RIS
such that |D(p)| > 2, for every pair of inclusion-minimal bundles X and Y in D(p) such
that X #Y, there ezists a bijective function o from the set X \'Y to the set Y \ X such that
for every i € X \'Y, both bundles X U{c (i)} \ {i} and Y U{i} \ {o(i)} are in D(p).

"Theorems 13 and 14 in Hatfield and Milgrom (2005).
8Bundle X is inclusion-minimal in D(p) if X € D(p) and for every strict subset X’ of set X, X’ ¢ D(p).
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Lemma 1 Every endowed assignment valuation function v is strongly exchangeable.

Proof.

Consider an EAV function v and a vector of prices p, and suppose there exist bundles
X and Y such that X # Y, v(X) — p(X) = v(Y) — p(Y) = maxzcsv(Z) — p(Z), and for
every X' C X and Y/ C Y, v(X') — p(X’) and v(Y’) — p(Y’) are both strictly smaller than
v(X) = p(X) = o(¥) = p(Y).

Consider the set of “endowed objects” T, the set of “positions” J, and the matrix of
match values o € RUSHITDXII a5 in Definitions 2 and 3 above. We thus have w(T) =
max, y ieT. jeg QijZijs where z varies over all possible assignments of elements in 7" to elements
in J, and for any bundle S C S, we have v(S5) = max; >

varies over all possible assignments of elements in S UT to elements in J.

iesur, jes @iz — w(T), where 2
Take a profit-maximizing assignment between the objects in X U T and positions in J
under prices p corresponding to the subset X being chosen from S, and call this assignment

zx. Formally,

Zx € argmax g Qi Zig,
z iEXUT, jeJ

where z varies over all possible assignments of elements in X UT to elements in J. Similarly,

take a profit-maximizing assignment zy corresponding to the subset Y being chosen:

Zy € argmax Z Qi Zig,
# i€EYUT, jeJ
where z varies over all possible assignments of elements in Y U T to elements in J.

Note that we allow prices to be negative, and for any object ¢ such that p(i) < 0, we
have i € X even if object ¢ is not matched to any positions under zx. If, however, p(i) > 0
and ¢ € X, then i has to be matched to a position under zx: If p(i) > 0, i € X, and i
is not assigned to any position to under zy, then v(X \ {i}) — p(X \ {i}) > v(X) — p(X),
contradicting either the optimality or the inclusion-minimality of bundle X. Analogously,
we have ¢ € Y whenever p(i) < 0, and when p(i) > 0, then ¢ € Y only if i is assigned to
some position under zy.

Now, construct the following colored bipartite graph with objects from S UT as vertices
on one side and positions from J as vertices on the other side. For every assignment between
an object ¢ in S UT and a position j in J under zx, draw a red edge connecting ¢ and j.
For every assignment between an object ¢ in S UT and a position j' in J under zy, draw a
blue edge connecting ¢’ and j'. (Some object-position pairs—those that are matched to each

other under both zx and zy—are connected by two different edges.)



In the graph, each node has degree zero, one, or two. Thus, the graph can be decomposed
into disjoint paths and cycles that have no vertices in common. Take any object i € X \ Y.
Note that it has degree one in the graph.? Therefore, it is an end of a path (this path can
be as short as just one red edge, or it can consist of a chain of edges of alternating colors,
starting with a red one). The other end of the path can be a position in set J (if the number
of edges in the path is odd) or an object in set T', an object in set Y\ X, or an object in set
X NY (if the number of edges in the path is even).

Moreover, note that the sum of “match values” (a;; — p;) over the red edges in this path
has to be equal to the sum of match values over the blue edges in this path.!?>!! The reason
for this equality is that if it did not hold, we could “swap” one set of edges for another and
obtain an assignment of objects to positions with a profit higher than that of zx and zy.!2

Next, note that the other end of the path has to be an object in Y\ X. In all other
cases (the other end is a position in J, or an object in T, or an object in X NY’), all objects
involved in this path would be in X UT', and by “swapping” the red edges in this path for the

t713

blue edges in i we would obtain an assignment with the same total profit as that of set

X and assignment zy, but with a set of non-endowed objects X \ {i} instead of X—which

9Object i cannot have degree two, because it does not belong to bundle Y. Also, i ¢ Y implies that
p(i) > 0. As we observed above, any object ¢ € X such that p(i) > 0 has be to matched to some position
under assignment zx. Thus, it has degree one in the graph.

10The same statement is true for the cycles in the graph—the sum of match values over the red edges in
any cycle is equal to the sum of match values over the blue edges in that cycle. Our proof, however, only
relies on the observation of the equality of sums of match values for paths.

1Tn the case when the path has no blue edges, the sum of match values over the set of blue edges is equal
to zero. In the case when the other end of the path, ¢*, is an object in set X NY, the sum of match values
over the red edges includes (—p(i*)) (note that as we observed above, if i* € X and ¢* is not assigned to any
position under zx, it has to be the case that p(i*) < 0).

12Formally: Suppose the sum of “match values” over the set of red edges in the path is strictly larger than
that over the set of blue ones. Note that object ¢ is the only object involved in the path that belongs to
X \Y, and let B denote the set of objects in the path that belong to Y\ X (set B may consist of one or zero
elements: if the other end of the path is an object in Y\ X, then |B| = 1; if the other end of the path is a
position in J or an object in X NY or T, then |B| =0). Let Y/ = Y U{i}\ B, and let 2’ be an assignment of
objects in Y to positions in J that coincides with assignment zy (i.e., corresponds to the blue edges) on all
elements of Y’ that are not involved in the path, and coincides with zx (i.e., corresponds to the red edges)
on all elements of Y’ that are involved in the path. Then

oY) =p(Y) = Y akzhy —w(@) —p(Y') > Y ani(zy)ky — w(T) = p(Y) = v(Y) - p(Y),
kEY',jeJ keY,jeJt

where the first inequality holds because z’ is a feasible assignment of objects to positions for set Y’
(though not necessarily the optimal one), and the second inequality holds because the difference between
D keyrjes Qkizp; — P(Y') and 37,y iy akj(2y)k; — p(Y) is precisely the difference between the sum of
match values over the set of red edges in the path and the sum of match values over the set of blue edges.
Thus, v(Y") — p(Y') > v(Y) — p(Y) = v(X) — p(X), contradicting the assumption that bundles X and Y
were optimal given the vector of prices p. The case in which the sum of match values is larger over the set
of blue edges in the path than over the set of red ones is completely analogous.
13“Swapping” can again be formalized in a way analogous to footnote 12.



would violate the assumption that X was inclusion-minimal.

Thus, we can establish a one-to-one mapping o between the objects in X\ Y and Y\ X by
following the paths connecting them in the red-blue graph. The fact that for every i € X\Y,
both bundles X U{c (i)} \ {i} and Y U{i} \ {c(i)} are in D(p) follows from the observation
that the sum of match values along the red edges is equal to the sum of match values along

the blue edges, for every path. m

Step 2: Not-strongly-exchangeable GS Valuation Function

14

Consider the following valuation function.” There are six objects in set S, graphically

represented as the edges of the complete graph with four vertices (see Figure 1).
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Figure 1: Graphical representation of the six objects in set S

Define valuation r on this set S as follows. For a set of objects (i.e., edges) X C S, r(X)
is equal to the size of the largest subset of X that does not contain any cycles. In other
words, for any set X of size at most 2, r(X) = | X|; for any set X of size at least 4, r(X) = 3,
and for any set X of size 3, r(X) = 2 if the three objects in X form a cycle, and r(X) = 3
if the three objects in X do not form a cycle. (One interpretation of this valuation function
is that it represents some network, and additional edges are only valuable when they allow

new connections that are not already available without them.)
Lemma 2 Valuation function r is not strongly exchangeable.

Proof. Let p = 0, so the profit from any bundle is equal to its valuation. Note that
r({1,2,3}) = r({4,5,6}) = 3, and so both bundles are inclusion-minimal maximizers. How-
ever, there is no “strongly exchangeable” one-to-one mapping between the two. Indeed,

edge 1 can only be exchanged for edge 4 (it cannot be exchanged for edge 5, because

14This valuation function was conjectured by Miiller et al. to be a potential example of a GS valuation
that is not an EAV. Miiller et al. showed that the results of matroid theory imply that this valuation function
satisfies the GS condition, and that it cannot be represented as an Endowed Assignment Valuation if all the
elements in matrix a of match values are constrained to be 0 or 1. Those results, however, do not imply the
impossibility of such a representation with general EAV functions, which is what our main result shows.



r({5,2,3}) = 2 < 3; and it cannot be exchanged for edge 6, because r({4,5,1}) = 2 < 3).
Likewise, edge 3 can only be exchanged for edge 4. Since there is no one-to-one mapping
under which both edge 1 and edge 3 are mapped to edge 4, valuation function r is not

strongly exchangeable. m
Lemma 3 Valuation function r satisfies the Gross Substitutes condition.

Proof. This result follows from the fact that function r is a matroid rank function.!®
However, for completeness, we provide a self-contained proof of Lemma 3, which does not
rely on any results or definitions of matroid theory (although of course the ideas of the proof
are closely related to that theory). The proof also illustrates that function r is not an “edge
case”: there is a rich class of GS valuations that are not EAV. The self-contained proof is in

the Appendix. =

Thus, by Lemmas 1 and 2, valuation r does not belong to the class of Endowed As-
signment Valuations. By Lemma 3, valuation r satisfies the Gross Substitutes condition.
Combined with the fact that EAV C GS (Hatfield and Milgrom, 2005), these two observa-

tions conclude the proof of Theorem 1.

4 Matroid-Based Valuations

Our result shows that not all GS valuations can be “built from” unit-demand valuations.
It thus leads to a natural question: What are the fundamental building blocks for GS
valuations? We now describe one class of valuations, which by our main result is strictly
larger than the set of EAV, and conjecture that this class of valuations is in fact equal to
those that satisfy the GS condition. We call this class Matroid-Based Valuations. To define
this class of valuation functions, we need to recall the definitions of a matroid and a weighted

matroid.

Definition 5 A matroid is a pair (S,Z) where S is a finite set of objects (called the ground
set of the matroid) and T is a collection of subsets of set S (called the independent sets of
the matroid) such that

o O €7 (ie., the empty set of objects is independent);

o if X €T and X' C X, then X' € T (i.e., any subset of an independent set is indepen-
dent);

15Specifically: r is the rank function of matroid M(K,) (Oxley, 1992); every matroid rank function is
MP-concave (Murota, 1996; Murota and Shioura, 1999); and every M?i-concave function satisfies the Gross
Substitutes condition (Fujishige and Yang, 2003).



o if XY €T and | X| < |Y|, then there exists object y € Y \ X such that X U{y} € T.

Definition 6 A weighted matroid is a tuple (S,Z,w), where (S,Z) is a matroid and w is a
weight function w : S — R that assigns a non-negative value to every object in the ground
set I

A valuation function v induced by weighted matroid (S,Z,w) is constructed as follows.

Take any set of objects X C S. Then the valuation of this set is given by

By the results of Murota (1996), Murota and Shioura (1999) and Fujishige and Yang
(2003), every valuation function v induced by a weighted matroid satisfies the GS condition.
The opposite, however, is not true. To see that, note that every valuation function v induced
by a weighted matroid satisfies the following property. Take any set X C S such that for
every X' € X, v(X') < v(X). Then it is the case that v(X) = > _yv(x). Consider
now set S = {a,b} and valuation function u given by u(@) = 0, u({a}) = u({b}) = 1,
u({a,b}) = 1.5. Valuation function u satisfies the GS condition, but it is not the case that
u({a,b}) = u({a}) + u({b}).

Consider now the two substitutability-preserving operations used to generate the class
of EAV preferences from unit-demand ones: “merging” and “endowment”.!® Formally, the
merging operation takes two valuation functions v; and vy over set .S of objects, and defines

the “merged” valuation function v* as follows: for any set X C S,
v'(X) = max (v (Y) +v(X\Y)).

The “endowment” operation takes a valuation function v over some set S U T of objects

(with SNT = @) and defines valuation v" over subsets X of set S as
V(X)) =0v(XUT)—o(T).

Both of these operations preserve substitutability (i.e., if functions vy, ve, and v above
satisfy the GS condition, then functions v* and v’ satisfy it as well). Thus, if one starts with
a class of substitutable valuation functions and repeatedly applies these two operations,
the resulting class of valuation functions will also be substitutable. If one starts with unit-

demand valuations, then as Hatfield and Milgrom (2005) show, the resulting class of valuation

6The “merging” operation is also known in the literature as “convolution” (Murota, 1996) and “OR”
operation (Lehmann et al., 2006). The “endowment” operation is also known as the “marginal valuation”.



functions is EAV. As the main result of our paper shows, EAV is strictly smaller than the
class of GS valuations; in particular, there are valuation functions induced by weighted
matroids (like the valuation function r induced by the matroid in Step 2 of the proof of main
result, with all weights set to 1) that are not in EAV.

But what if one instead starts with the class of valuation functions induced by weighted
matroids? Formally, let MBV (for Matroid-Based Valuations) be the smallest class of val-
uation functions that contains all valuation functions induced by weighted matroids and is
closed under the operations of “merging” and “endowment.” We know that MBYV is strictly
larger than EAV, and we know that MBYV is a subset of valuation functions that satisfy the
GS condition. It is an open question whether MBV = GS.

Conjecture 1 The class of Matroid-Based Valuations is equal to the class of valuations that

satisfy the Gross Substitutes condition.
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Appendix: Proof of Lemma 3

We will prove the following generalization of Lemma 3. Take any graph G. Let S be the set
of edges of graph GG. Consider the following valuation r over the subsets X of S:

r(X) = the number of edges in the largest subset of X that does not contain cycles.

Then valuation function r satisfies the Gross Substitutes condition.

We will prove the following statement about valuation r. Take any vector of prices
p € RISl such that for any sets X, Xy C S, r(X1) — p(X1) # 7(X3) — p(X3) (and in
particular, D(p) is single-valued, and so slightly abusing notation, we will denote by D(p)
the unique payoff-maximizing bundle). Increase the price of one object, i: take vector of
prices p' € RI®! such that p} > p; and p; = p; for all j # i, and for any sets X;, Xp C S,
r(Xy) — p/(Xy) # r(Xz) — p'(X2) (and in particular, D(p') is again single-valued). Take any
object j # 4. Then if j € D(p), then j € D(p).'"

The proof of the above statement will rely on the following graph-theoretic observation.
Take any set of edges X C S and three distinct edges a, b, and c that are not in X. Suppose
(i) the set of edges X U {a,b} contains a cycle that contains edges a and b, (ii) the set of
edges X U {b} does not contain a cycle that contains edge b, (iii) the set of edges X U {a, c}
contains a cycle that contains edges a and ¢, and (iv) the set of edges X U {c} does not
contain a cycle that contains edge c. Then the set of edges X U {b, ¢} contains a cycle that
contains edges b and c.*®

Observe now that for both vectors of prices p and p’, the demands under those vectors

can be constructed using the following “greedy” procedure. First, order the objects from

1"This statement appears to be weaker than the definition of Gross Substitutes, because (a) it only
considers vectors of prices under which indifferences between bundles do not arise and (b) it involves raising
the price of only one object, rather than several ones. However, this definition is in fact equivalent to
Definition 1. To address issue (a), one can perturb the prices by a very small amount in such a way that
indifferences disappear and bundle X in Definition 1 becomes the unique demanded set. The corresponding
unique set X’ will then have the desired property—and will survive as a demanded set in the limit as the
size of the perturbation is taken to zero. To address issue (b), one can simply raise prices one by one, and
note that every time one of the prices increases, the previously demanded objects for which the price did
not increase remain demanded in at least one optimal bundle after the increase.

18To see this, let e; and ey denote the two endpoints of edge a. Let X; denote the set of edges connecting
edge b to endpoint e; in a cycle in X U {a,b} that contains edges a and b; X5 denote the set of edges
connecting b to endpoint es in that same cycle; X3 denote the set of edges connecting edge ¢ to endpoint e;
in a cycle in X U {a, c} that contains edges a and ¢; and finally let X, denote the set of edges connecting
¢ to endpoint es in that same cycle. Note that (X7 U X3) N (X2 U Xy) = @ (because otherwise X U {b}
would contain a cycle that contains edge b or X U {c} would contain a cycle that contains edge ¢). This, in
turn, implies that one can find sets of edges Y1 C (X3 U X3) and Y5 C (X2 U X4) such that the set of edges
{b} UYL U{c} UY; is a cycle.
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the cheapest to the most expensive.!¥ Next, go down the list of objects in that ordering.
For each object, if adding it to the list of those already in the demanded set increases the
total payoff (i.e., the incremental value of that object is higher than its price), then do add
it. Otherwise, do not.20-21,22

Next, if i ¢ D(p), or i € D(p'), then it is immediate that D(p’) = D(p), and thus
j € D(p). Suppose i € D(p), i ¢ D(p'). Suppose also that j € D(p) and j ¢ D(p')—we will
show that this will lead to a contradiction.

Without loss of generality, suppose j is the cheapest object (other than ¢) that is chosen
in D(p) but not in D(p’). Given that the demands can be constructed using the “greedy”
procedure above, two statements must be true. First, p; < p; (otherwise, increasing the price
of objects i would not have had any effect on whether object j is demanded). Second, there
is exactly one object, k, with the price between p; and p; that is not chosen under price p

but is chosen under price p'.23

90ur “no indifferences” condition on vectors p and p’ implies that all objects have different prices, so for
each of these two price vectors, this ordering is unique.

20The “no indifferences” condition implies that the incremental value of an object is never equal to its
price.

21To see that this procedure indeed produces the bundle with the highest payoff for the agent, suppose
X # D(p) is the bundle generated by the procedure (given price vector p). Note first that bundle X cannot
be a strict subset of D(p), because any object i € (D(p) \ X) has a positive incremental contribution when
added to D(p) \ {i}, and thus also has a positive incremental contribution when added to any subset of
D(p) \ {i}, and would therefore also have had a positive incremental contribution when it was encountered
on the path of the greedy procedure.

Next, take the cheapest object j € X \ D(p). Let

K={keD({p)\X : D(p)U{j} contains a cycle that contains j and k}.

Note that j and every k € K have prices strictly between zero and one (otherwise, they would belong
to either both X and D(p) or neither). Note also that set K is not empty, and that there are no cycles
containing any objects from K in D(p). Also, all objects in K are more expensive than j (because j was the
cheapest object in X \ D(p), and so any object j’ cheaper than j was considered prior to j by the greedy
procedure—and if the incremental value of ;' was not found to be positive by the greedy procedure, it could
not be positive in the bundle D(p)).

Consider the set of cycles containing j in D(p) U {j}. From this set, pick a cycle, C, with the smallest
number of objects from K. Take any k € K N C. Consider the set D(p) U {j} \ {k}. The total cost of the
objects in this bundle is cheaper than that in D(p). And the total valuation of the bundle is the same: there
is no cycle in D(p) U {j} containing j and objects from (K NC)\ {k} but not K \ C' (because of how C was
chosen), and there is also no cycle in D(p)U{j} containing j and objects from (K NC)\ {k} and some object
k' from K\ C (because in that case, by the graph-theoretic observation above, D(p) would have contained a
cycle that contained k and k’). Thus, the net payoff from bundle D(p) U {j} \ {k} is higher than that from
bundle D(p), contradicting the definition of D(p).

22We could end the proof here: the fact that for any price vector, the optimal demand can be constructed
using the “greedy” procedure implies that the valuation function satisfies the GS condition; in fact the two
statements are equivalent (see e.g., Paes Leme, 2014). However, since the purpose of this Appendix is to
provide a self-contained proof of Lemma 3, we include the additional arguments that conclude the proof.

23(learly, there has to be at least one such object—otherwise, simply removing object i from the bundle
could not have led to a decrease in the incremental value of object j, and so it would continue to be chosen
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Consider now edges i, j, k, and the set of edges T' C S\ {i, j, k} that are cheaper than j
and that are chosen under the vector of prices p (and thus also under the vector of prices p':
for the objects that are cheaper than j, D(p) and D(p’) only differ by i and k). Note that
the prices of objects j and k are positive (otherwise, they would always be demanded, under
both p and p’). Also, there is a cycle in the set T'U {i, k} that contains objects ¢ and k, and
no cycle containing k in the set 7'U {k} (otherwise, the presence of i could not have affected
the incremental value of k), and there is also a cycle in the set T°U {k, j} that contains
objects k and j, and no cycle containing j in the set T'U {j} (otherwise, the presence of k
could not have affected the incremental value of j). But these observations imply that there
is a cycle in the set T'U{7, j} that contains objects ¢ and j, which contradicts the assumption
that j € D(p).

by the greedy procedure under p’. To see that there cannot be two (or more) such objects, assume the
contrary, and take the two cheapest such objects, k1 and ko (with k; being the cheaper of the two). Let
X ={x € (D({p)\{i}) : px < Pk, }, i-€., the set of objects chosen by the greedy procedure prior to object ko
under the vector of prices p. Note that k1 and ks must have prices strictly between zero and one. Note also
that k1 must belong to a cycle that also contains object ¢ and objects in X, and cannot belong to any cycle
that only contains k; and objects in X (but not ¢). Likewise, ko must belong to a cycle that also contains
object 7 and objects in X, and cannot belong to any cycle that only contains ks and objects in X. The
graph-theoretic observation then implies that k; and ks belong to a cycle that also contains objects in X,
contradicting the assumption that both were chosen by the greedy procedure under the vector of prices p’.
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