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Abstract
We study optimization with an approximate zero order oracle where there is a cost c(ε) associated
with querying the oracle with ε accuracy. We consider the task of reconstructing a linear function:
given a linear function f : X ⊆ Rd → [−1, 1] defined on a not-necessarily-convex set X , the goal is
to reconstruct f̂ such that |f(x)− f̂(x)| ≤ ε for all x ∈ X . We show that this can be done with cost
O(d · c(ε/d)). The algorithm is based on a (poly-time computable) John-like theorem for simplices
instead of ellipsoids, which may be of independent interest.

This question is motivated by optimization with threshold queries, which are common in
economic applications such as pricing. With threshold queries, approximating a number up to
precision ε requires c(ε) = log(1/ε). For this, our algorithm has cost O(d log(d/ε)) which matches
the Ω(d log(1/ε)) lower bound up to log factors.

1. Introduction

It is often the case that in order to evaluate a function f(·) you need to perform a costly procedure
such as solving an optimization problem or taking the average of many samples of a random variable.
In such scenarios, it tends to be possible to trade-off between accuracy and cost. Some examples (in
the following examples, we assume f(x) ∈ [−1, 1]):

• if f(x) = E[Z(x)] and we can only sample Z(x) we can get an ε approximation of f(x) with
1− δ probability by taking the average of O(ε−2 log(1/δ)) samples.

• if f(x) = miny∈Y g(x, y) for g(x, ·) is convex, we compute f(x) by minimizing g(x, ·) via a
variant of gradient descent, we can an ε approximation of f in O(1/εα) where the constant α
depends on the properties of g (smooth vs non-smooth) and on the algorithm used (accelerated
or not).

• if we have access only to threshold queries, i.e., we can only ask if f(x) ≤ p or not, then we
can get an ε-approximation of f using O(log(1/ε)) queries.

• if we have access to threshold queries, but we need to choose the thresholds in a non-adaptive
manner (i.e., choose all the thresholds at the same time) then we can get an ε-approximation
using O(1/ε) queries.

c© 2020 R.P. Leme & J. Schneider.
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Oracle model In our model we will assume that a function f : X ⊂ Rd → [−1, 1] is equipped
with an oracle that given x ∈ X and ε > 0 returns y ∈ R such that |f(x)− y| ≤ ε (note that we only
allow queries to points in X and not more generally to points in Rd). Each such query to the oracle
has some cost c(ε), where the function c(ε) depends on the underlying model (for example, for
threshold queries, c(ε) = log(1/ε); for stochastic zeroth order queries, c(ε) = ε−2). For simplicity
we will assume that c(ε) satisfies c(O(ε)) = O(c(ε)) (this holds for all polynomial/sub-polynomial
c(ε)).

Learning task We will consider the task of reconstructing a linear function. Assume f : X →
[−1, 1] is linear (with X not necessarily convex). Our goal is to produce a function f̂ : X → R such
that

|f(x)− f̂(x)| ≤ ε, ∀x ∈ X

Our initial motivation for studying this problem is how to learn customer preferences through
pricing queries. Assume a point x ∈ X corresponds to a product represented by a vector of features.
We can interact with the customer by offering product x ∈ X at price p ∈ R and observing if the
customer purchases it or not. This corresponds to a threshold query. How many queries are necessary
to reconstruct the customer’s preference?

While one main application is in pricing, threshold queries are also common in other domains
such as reliability testing (given a certain force, will a material break or not) and determining
effectiveness of drugs/vaccines (given a certain dose of a medication, will the patient be cured). In
such cases, there is usually a threshold separating the success and failure cases and the feedback is
binary.

Main Results and Techniques The natural approach for reconstructing f(x) = 〈v, x〉 is to choose
d points x1, . . . , xd that are linearly independent in X , use our costly zero-order oracle to obtain an
estimate of f(xi) for each xi, and then write x in the basis given by xi to compute f(x) for any x.
Indeed, if we choose each xi to be the unit vector ei (under the assumption ei ∈ X), this method
works – by measuring each f(ei) to within ε/d, we can reconstruct f(x) for any x ∈ [0, 1]d to within
ε, for a total cost of dc(ε/d).

This problem becomes harder when our set X of valid queries does not necessarily contain a
“good” basis like the unit vectors ei. The difficulty with this idea is that if the matrix with rows xi
is ill-conditioned, the error can be blown up by the condition number of the matrix, which can be
arbitrarily bad if the choice of xi is naive. The problem can therefore be thought of as follows: given
an arbitrary (not even necessarily convex) set X , how can we find a good basis for X?

We begin by examining the case where X is convex. By measuring along the basis formed by the
axes of the John ellipsoid of X , we show it is possible to reconstruct f(x) with total cost dc(ε/d1.5).

Theorem 1 If X is convex, there is an efficient (polynomial-time) procedure with cost O(d ·
c(ε/d1.5)) for reconstructing a linear function with a costly zero order oracle.

We then consider the case where X is not-necessarily convex: for example, an arbitrary point set,
or the union of several convex bodies (here we assume we have access to X through an oracle that
given a vector w ∈ Rd returns a point x ∈ argmaxx∈X 〈w, x〉). In this setting we can no longer use
the same strategy of Theorem 1 of measuring along the axes of the John ellipsoid of (the convex hull
of) X , since not all points in the convex hull of X can be directly queried.
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To overcome this difficulty, we design a variant of John’s theorem for simplices, showing that for
any set of points X , it is always possible to efficiently find a simplex T whose vertices are contained
in X such that a poly(d)-dilation of T contains X . This theorem is the main technical result of the
paper, and may be of independent interest.

Theorem 2 Given a (not necessarily convex) set X there is a polynomial time algorithm that selects
a simplex T with vertices in X such that X is contained in a translate of −4dT .

By measuring along the basis formed by the vertices of this simplex, we show it is possible
to efficiently reconstruct f(x) with total cost dc(ε/d) (note that this is a strict improvement over
Theorem 1).

Theorem 3 For any (not necessarily convex) setX , there is an efficient (polynomial-time) procedure
with cost O(d · c(ε/d)) for reconstructing a linear function over X with a costly zero order oracle.

Finally, we show that for the specific case of threshold queries where c(ε) = log ε−1, we show
that these algorithms are nearly optimal: both algorithms incur total cost O(d log(d/ε)), but there
is an information-theoretic lower bound showing that any algorithm must incur total cost at least
Ω(d log(1/ε)) even when X is just the unit d-dimensional ball (Lemma 18). For other cost functions
mentioned above (e.g. c(ε) = ε−1 and c(ε) = ε−2), the above algorithms are optimal up to a
polynomial factor in d – understanding how to close this gap is an interesting open question.

1.1. Related Work

The geometric techniques we use for the reconstruction problem are closely related to the largest
simplex problem introduced by Khachiyan (1995) and recently studied by Summa et al. (2014) and
Nikolov (2015), who show approximation algorithms for maximum volume problem. Instead of
the volume, we work here with with a local notion of optimality: we look for simplices where it is
impossible to improve the volume by an α factor by changing any single vertex.

Learning from threshold queries is a prominent component of much recent work in revenue opti-
mization and contextual pricing Cohen et al. (2016); Javanmard and Nazerzadeh (2016); Javanmard
(2017); Mao et al. (2018); Paes Leme and Schneider (2018); Shah et al. (2019). Unlike in this paper,
the majority of this work focuses on settings where we cannot query arbitrary points x, but instead
where a stream of points x1, x2, . . . are generated online (either stochastically or adversarially)
and the learner is only allowed to query those. Moreover, the typical objective is revenue and not
reconstruction.

2. Warm up: convex case

Notation Given a set Z ⊂ Rd we will denote its convex hull by Conv(Z). We will call a convex
hull of d+ 1 points z0, z1, . . . , zd a simplex with vertices z0, z1, . . . , zd.

We will begin with the case where our set X of potential queries is convex. Here we will use
John’s Ellipsoid to construct a good basis of points to query.

Theorem 4 (John) Given a convex full-dimensional set X , there is a point u ∈ X and d orthogonal
vectors a1, . . . , ad ∈ Rd such that:

u+ E ⊆ X ⊆ u+ dE for E =
{∑

i ziai;
∑

i z
2
i ≤ 1

}
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Lemma 5 Let f : X ⊂ Rd → R be a linear function over a convex set and u, a1, . . . , ad be as in
John’s Theorem. Given an estimates y0, y1, . . . , yd of f(u), f(u+ a1), . . . , f(u+ ad) with precision
ε/(3d1.5) then we can estimate any point in X within precision ε.

Proof By John’s Theorem, any point x ∈ X can be written as x = u+
∑

i daizi = u(1−
∑

i dzi) +∑
i d(u+ ai)zi with

∑
i z

2
i ≤ 1. Hence

∑
i |zi| ≤

√
d.

Given estimates yi such that |y0 − f(u)| ≤ ε/(3d1.5) and |yi − f(u+ ai)| ≤ ε/(3d1.5), then

|y0(1−
∑

i dzi) +
∑

i dziyi − f(x)| ≤ |1−
∑

i dzi| · |y0 − f(u)|+
∑

i d|zi| · |yi − f(u+ ai)|

≤

(
1 + d

∑
i

|zi|

)
ε

3d1.5
≤ ε.

Hence by querying u and u+ai with precision ε/(3d1.5) we can obtain precise enough estimates
that allow us to reconstruct f for every point of X (and thus prove Theorem 1).

For this to work it is important thatX is convex. IfX is not convex, we can still apply the previous
lemma to Conv(X) but the points u and u + ai might not be in X – however, by Caratheodory’s
theorem we can always write them as a convex combination of d + 1 points in X . The following
lemma uses this fact to give a simple procedure with total cost O(d2c(ε/(3d1.5)).

Lemma 6 Let f : Rd → R be a linear function and let x1, x2, . . . , xn be n points in Rd.
Given approximations y1, y2, . . . , yn to f(xi) which satisfy |f(xi)− yi| ≤ ε, any point x ∈
Conv({x1, x2, . . . , xn}) can be approximated within ε error.

Proof If x =
∑n

i=1 λixi with λi ≥ 0 and
∑

i λi = 1 then |
∑

i λiyi − f(x)| ≤ ε since

|
∑

i λiyi − f(x)| = |
∑

i λiyi −
∑

i λif(xi)| ≤
∑

i λi|yi − f(xi)| ≤ ε

If the points u and u+ ai are not in X we can write each of them as a convex combination of
d + 1 points in X using Caratheodory’s Theorem since those points are in the convex hull. If we
obtain a ε/(3d1.5) approximation for each of those points, we can obtain the same approximation
for u and u+ ai using Lemma 6 and then apply 5 to reconstruct f . The problem with this approach
is that this requires us to approximate f on O(d2) points, leading to total cost of O(d2c(ε/d1.5)).
For c(ε) = log 1/ε, this is polynomially worse in d than the dc(ε/d1.5) bound of Theorem 5 (let
alone the dc(ε/d) total cost if the unit vectors are present). In the next section, we will see how to
achieve a O(d · c(ε/d)) bound for general non-convex sets (thus achieving a nearly optimal bound
for threshold queries).

3. Non-convex case

We now recover a O(d · c(ε/d)) bound for non-convex sets using a different technique based on
developing a John’s theorem for simplices.
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Figure 1: Outer dual construction

Lemma 7 Given a simplex T with vertices in X and a point u ∈ T that satisfies S ⊆ u+ρ(T −u),
for some |ρ| ≥ 1 (i.e., X is contained in some possibly reflected dilation of T by a factor of ρ) it is
possible to solve the reconstruction problem for X with O(d · c(2|ρ|/ε)) cost.

Proof Let v1, v2, . . . , vd+1 be the vertices of T . By assumption vi ∈ X for all i, so we can query
those points with accuracy precision ε/(2ρ); in total this requires (d+1) ·c(2ρ/ε) = O(d log(2ρ/ε))
queries. Since u ∈ T , note that we can write u as a convex combination of the vectors vi, and
therefore calculate f(u) to within precision ε/(2ρ) (by Lemma 6).

Let T ′ = u + ρ(T − u); by assumption, X ⊆ T ′. We will show we can calculate the value
of f(x) for any x ∈ T ′ to within precision ε. To do this, it suffices (by Lemma 6) to compute the
vertices of T ′ to within precision ε. The vertices of T ′ are given by v′i = ρvi + (1 − ρ)u. Since
|ρ|+ |1− ρ| ≤ 2ρ, from our estimates of f(vi) and f(u) we can therefore estimate f(v′i) to within
2ρ · ε/(2ρ) = ε, as desired.

We now show that if we take the maximum volume simplex (MVS) with vertices in X , then this
simplex satisfies the conditions of Lemma 7 with ρ = d. By Lemma 7, this implies an algorithm for
reconstruction that uses O(d log(d/ε)) = O(d log(d/ε)) queries.

To do this, we introduce the concept of the outer dual of a simplex T .

Definition 8 Given d+ 1 points, v1, v2, . . . , vd+1 ∈ Rd, define the signed volume

Vol∆(v1, v2, . . . , vd+1) =
1

d!
det


v1 − v2

v1 − v3
...

v1 − vd+1

 .
Note that up to sign, Vol∆(v1, v2, . . . , vd+1) equals the volume of the simplex T with vertices vi.

Note that the set of points x such that Vol∆(x, v2, . . . , vd+1) = Vol∆(v1, v2, . . . , vd+1) forms
a hyperplane in Rd (in fact, the hyperplane passing through v1 parallel to the facet spanned by
v2, v3, . . . , vd+1). See Figure 1a. Taking the intersection of all such hyperplanes, we get a simplex
containing T which we call the outer dual of T (Figure 1b).
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Definition 9 (Outer dual) Given a simplex T in Rd with vertices v1, v2, . . . , vd+1, define the outer
dual D(T ) of T to be the simplex formed by the intersection of the d+ 1 halfspaces

Hi =

{
x ∈ Rd s.t.

Vol∆(x, v1, . . . , vi−1, vi+1, . . . vd+1)

Vol∆(vi, v1, . . . , vi−1, vi+1, . . . vd+1)
≤ 1

}
.

Lemma 10 Let T be the maximum volume simplex with vertices in X . Then X is contained in a
translate of −dT .

Proof We first claim that X is a subset of D(T ). To see this, assume there is an x ∈ X that does not
belong to D(T ). Then x violates one of the constraints Hi (Figure 1c). But then (by the definition of
Hi), the simplex with vertices {x, v1, v2, . . . , vi−1, vi+1, . . . , vd+1} has volume strictly greater than
Vol(T ), contradicting that T is the maximum volume simplex.

We next claim that D(T ) is a translate of −dT . To show this, note that both the definition
of D(T ) and the statement of this claim are invariant under affine transformations (in particular,
ratios of signed volumes are invariant under affine transformations). It thus suffices to prove this
for any simplex T in Rd. We will choose the simplex with vertices vi = ei for 1 ≤ i ≤ d (where
ei is the ith unit vector) and vd+1 = 0. For this T , Hi = {x |xi ≤ 1} for 1 ≤ i ≤ d, and
Hd+1 = {x |

∑
xi ≥ 0}. Let 1 =

∑
i ei be the all-ones vector; then these d+ 1 hyperplanes form a

simplex D(T ) with vertices 1 and 1− dei for each 1 ≤ i ≤ d, confirming that D(T ) is a translate
of −dT .

The lemma follows from the above two claims.

Unfortunately, finding the maximum volume simplex with vertices in a set X (even for a finite
point set X) is known to be computationally hard (Summa et al., 2014). To this end, we prove a
variant of Lemma 10 which holds for simplices which are “close” to being maximal in volume.
Here the precise definition of “close” is important. The most natural choice might be the definition
of an α-maximum-volume simplex, whose volume is within a factor α of the maximum volume
simplex, but unfortunately the best known efficient algorithms can only find such a simplex where α
is exponential in d (Khachiyan, 1995; Summa et al., 2014; Nikolov, 2015). Instead we will work
with a local version of maximal volume, where we will say a simplex is α-optimal if it is impossible
to improve its volume by a factor of more than α by modifying a single vertex.

Definition 11 (α-optimal) A simplex T ′ is X-adjacent to a simplex T if it is possible to obtain T ′

from T by replacing a single vertex v in T with a vector x in X . A simplex T with vertices in X is
α-optimal if for any X-adjacent simplex T ′, Vol(T ′) ≤ αVol(T ).

We can similarly define a relaxation of the outer dual of T .

Definition 12 (α-outer dual) Given a simplex T in Rd with vertices v1, v2, . . . , vd+1, define the
α-outer dual Dα(T ) of T to be the simplex formed by the intersection of the d+ 1 halfspaces

Hα
i =

{
x ∈ Rd s.t.

Vol∆(x, v1, . . . , vi−1, vi+1, . . . vd+1)

Vol∆(vi, v1, . . . , vi−1, vi+1, . . . vd+1)
≤ α

}
.

Given an α-optimal simplex, we can repeat the proof of Lemma 10 to show that X is is contained
in a translate of −α(d+ 1)T .
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Lemma 13 Let T be an α-optimal simplex in X . Then X is contained in a translate of−α(d+1)T .

Proof We similarly prove two claims: that X is a subset of Dα(T ), and that Dα(T ) is a translate of
−((d+ 1)α− 1)T .

We begin by showing that X is a subset of Dα(T ). Again, this follows from the definition of
Dα: if there is an x ∈ X that does not belong to Dα(T ), then x violates one of the constraints Hα

i ,
and the simplex with vertices {x, v1, v2, . . . , vi−1, vi+1, . . . , vd+1} has volume strictly greater than
αVol(T ), contradicting that T is α-optimal.

Similarly, since the definition of Dα(T ) is still invariant under affine transformations, to show
that Dα(T ) is a translate of−((d+ 1)α−1)T it suffices to show it for a specific T . We again choose
the simplex with vertices vi = ei for 1 ≤ i ≤ d (where ei is the ith unit vector) and vd+1 = 0. For
this choice of T , Hα

i = {x |xi ≤ α} for 1 ≤ i ≤ d, and Hα
d+1 = {x |

∑
xi ≥ −(α − 1)}. These

d + 1 hyperplanes form a simplex Dα(T ) with vertices α1 and α1 − ((d + 1)α − 1)ei for each
1 ≤ i ≤ d, confirming that Dα(T ) is a translate of −((d+ 1)α− 1)T . It follows that X is contained
within a translate of −(d+ 1)αT , as desired.

It now suffices to find any α-optimal simplex where α = poly(d). An α-maximum-volume
simplex (i.e. a simplex whose volume is within a factor α of the maximum volume simplex in X) is
α-optimal, but as mentioned earlier, the best known algorithms can only find α-maximum-volume
simplices with α exponential in d. We will demonstrate an efficient procedure that starts with any
α-maximum-volume simplex and transforms it into a 2-optimal simplex in time polynomial in logα.

Lemma 14 There is an efficient algorithm which, given an α-maximum-volume simplex T in X ,
returns a 2-optimal simplex T ′ in X , and runs in time polynomial in logα.

Proof To begin, note that given any d points v2, . . . , vd+1, we can efficiently find the point x ∈ X
which maximizes Vol∆(x, v2, . . . , vd+1): this x is exactly the x in X which maximizes 〈x, v⊥〉
where v⊥ is a vector perpendicular to the hyperplane spanned by v2, . . . , vd+1. We can find this x
with one call to our optimization oracle for X .

Now, by running this for each vertex of a simplex T , this gives us an efficient procedure that
takes a simplex T and either: a) certifies that T is 2-optimal or b) returns a new simplex T ′ whose
volume is at least twice the volume of T . If we start with an α-maximum-volume simplex T , we can
iterate this procedure at most logα times before it must result in a 2-optimal simplex T ′.

By Lemma 14, it suffices to start with any α-maximum-volume simplex in X where α =
exp(poly(d)). To find such a simplex, we can certainly use any of the known algorithms (Khachiyan,
1995; Summa et al., 2014; Nikolov, 2015) for approximating the maximum volume simplex. However,
these algorithms generally assume X is provided as the convex hull of a finite set of points, and it is
not necessarily straightforward to adapt these methods to general sets X with an optimization oracle.
Instead, we will construct an α-maximum-volume simplex as follows.

Lemma 15 Given a setX and an optimization oracle forX , one can efficiently find a d3d-maximum-
volume simplex T in X .

Proof We will show we can efficiently compute the maximum volume simplex T contained in the
John ellipsoid E of Conv(X). By Lemma 10, E is contained within a translate of d2T . Since (by the

7



COSTLY ZERO ORDER ORACLES

definition of John ellipsoid) X is contained within a translate of dE, this means that X is contained
within a translate of d3T , and therefore T is at least a (d3d)-maximum-volume simplex in X .

To find T , let A be the linear map which maps the unit ball B to E (this is equivalent to finding
the principal axes of E, so we can efficiently find A). Let TB be the maximum volume simplex
contained in the unit ball (this is just an appropriately scaled regular simplex). Then, since ratios of
volumes are preserved under linear transformations, ATB is the maximum volume simplex contained
in E.

Combining such results we obtain the following John-like theorem:

Theorem 16 (Restatement of Theorem 2) Given a (not necessarily convex) set X there is a poly-
nomial time algorithm that selects a simplex T with vertices in X such that X is contained in a
translate of −4dT .

Proof By Lemma 15, we can find a d3d-maximum-volume simplex T in X . By Lemma 14, we can
then find a 2-optimal simplex T ′ in X . By Lemma 13, X is contained within a translate of −4dT .

Corollary 17 There is a procedure with cost O(d · c(ε/d)) to reconstruct a linear function using a
costly zero order oracle.

Proof This follows directly from Theorem 16 together with Lemma 7.

4. Lower bounds

The cost of the procedure given in Lemma 5 is nearly optimal for threshold queries with cost
c(ε) = O(log(1/ε)). For these queries, the procedure has cost O(d log(d/ε)) while no algorithm
can obtain better than Ω(d log(1/ε)) by a simple information theoretic argument sketched in the
following lemma.

Lemma 18 Any reconstruction procedure must incur cost at least Ω(d log(1/ε)) for threshold
queries, i.e., for c(ε) = log(1/ε).

Proof Let X be the ball of radius 1. We will construct k = (1/ε)Ω(d) linear functions fi(x) = v>i x
with fi(x) = v>i x such that maxx∈X |fi(x)− fj(x)| > ε. To do that observe that we can choose
k = (1/ε)Ω(d) points v1, . . . , vk with ‖vi‖ = 1 such that ‖vi − vj‖2 > ε for any i 6= j (using
standard ε-net arguments).

Note that maxx∈X |fi(x)− fj(x)| = ‖vi − vj‖2 > ε. For this reason, the reconstruction
algorithm must be able to distinguish between all functions fi. Since the cost of the query for
c(ε) = log(1/ε) corresponds to the number of bits needed to represent the result (in particular,
consider the implementation of this oracle which returns the answers to the log(1/ε) threshold
queries binary search would perform), we must need at least log((1/ε)O(d)) = O(d log(1/ε)) total
cost.

Against deterministic, non-adaptive algorithms, we can show a similar lower bound of Ω(dc(10ε))
for any cost function c. (Note that all our algorithms in Sections 2 and 3 are deterministic and non-
adaptive).

8
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Lemma 19 Any deterministic non-adaptive reconstruction procedure must incur cost at least
Ω(dc(10ε)).

Proof Again, let X be the ball of radius 1 in Rd. Note that any deterministic and non-adaptive
algorithm must always make the same set of queries to the oracle; let us write these queries as
(x1, ε1), (x2, ε2), . . . , (xn, εn), where (xi, εi) means that the algorithm queries the oracle for the
value of f(xi) to within error εi. Let k be the number of queries i where εi ≤ 10ε (and without
loss of generality, let these k queries be (x1, ε1) through (xk, εk)). We will prove that we must have
k ≥ d, from which the theorem follows.

Assume k < d. We will construct an instance on which this reconstruction procedure fails.
Specifically, we will show how to construct two linear functions f and f ′ and a sequence of responses
yi to the queries such that:

• For each i, |yi − f(xi)| ≤ εi and |yi − f ′(xi)| ≤ εi.

• There exists an x ∈ X such that |f(x)− f ′(x)| > 2ε.

The first condition guarantees the response yi to query (xi, εi) is valid for both functions f
and f ′. The second condition guarantees that any correct reconstruction procedure must be able to
distinguish between these two functions.

Consider the k points x1, x2, . . . xk. Since k < d, these points lie on some hyperplane H of
dimension d′ < d. Choose a unit vector u that is perpendicular to H . Consider the two linear
functions f(x) = 2ε〈u, x〉 and f ′(x) = −2ε〈u, x〉. Note that |f(u) − f ′(u)| = 4ε, satisfying the
second point above. In addition, note that |f(x)| ≤ 2ε and |f ′(x)| ≤ 2ε for all x.

Now consider what happens if we set yi = 0 for all i (i.e. our oracle always responds 0). For
i ≤ k, note that f(xi) = f ′(xi) = 0 (since xi ∈ H), so |yi − f(xi)| = |yi − f ′(xi)| = 0, and
the first condition is satisfied. On the other hand, for i > k, we know that εi > 10ε, and therefore
|f(x)− yi| = |f(x)| ≤ εi (and likewise, |f ′(x)− yi| ≤ εi), and again the first condition is satisfied.
This implies the theorem statement.

5. Open Problems

In this paper, we demonstrate an algorithm which solves the reconstruction problem for arbitrary sets
with total cost O(dc(ε/d)). This is nearly tight for threshold queries (where c(ε) = log 1/ε), but not
necessarily for other cost functions. The main question left open is whether it is possible to improve
the asymptotic total cost of our algorithms, possibly to the lower bound of Ω(dc(ε)) in Lemma 19.

One approach for improving our algorithms is to improve the O(d) bound in our analogue of
John’s theorem (Theorem 2). For simplices it turns out that this bound is asymptotically tight (see
Section 5.1 below), but we can ask the same question for convex combinations of larger numbers of
points.

Question 1 Given a convex set K, what are the values of v and s such that it is possible to find a set
V ⊆ K with |V | = v such that for P = Conv(V ) we have P ⊆ K ⊆ x+ sP?

A feasible (v, s) pair would lead to an algorithm for linear reconstruction with cost O(v · c(ε/s)).
Notably, for v > d+ 1, we can hope for values of s asymptotically less than d. Even for very simple
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sets X that contain a basis of unit vectors (e.g. the unit ball, or the unit hypercube [0, 1]d), it is not
clear whether it is possible to achieve a total cost of O(dc(ε)) – the naive approach of “estimate a
basis of unit vectors” results in a cost of O(d · c(ε/s)) (for the unit ball, this can be improved to
O(d · c(ε/

√
d)) following the ideas of Lemma 6).

For the hypercube K = [0, 1]d, the following lemma says we cannot hope to find such a set with
v = O(d) and s <

√
d.

Lemma 20 In the setting of Question 3 if K = [0, 1]d, we have: s ≥ Ω(d1/2v−1/d). In particular
for v = O(d) points the best scaling is at least s ≥ Ω(

√
d).

Proof Hadamard’s maximum determinant problem (Hadamard, 1893) is the problem of finding d
points in [0, 1]d maximizing the determinant of the matrix obtained by taking such points as rows.
Hadamard showed that any such determinant is upper-bounded in magnitude by dd/2/2d, with this
bound being achieved for dimensions that are powers of 2. This implies in particular that the volume
of any simplex in [0, 1]d is at most 1

d! ·
dd/2

2d
= exp(−1

2d log(d) +O(d)).
If V ⊆ [0, 1]d and |V | = v, we can decompose Conv(V ) into most v − d+ 1 simplices. Hence

Vol(Conv(V )) ≤ v · exp(−1
2d log(d) +O(d)). Since sConv(V ) contains [0, 1]d we have:

sd · v · exp

(
−1

2
d log(d) +O(d)

)
≥ 1.

This implies the theorem statement.

Question 2 Does there exist an algorithm for the hypercube K = [0, 1]d with total cost d · c(ε/
√
d)?

Does there exist a matching lower bound?

Finally, all of the algorithms presented in Sections 2 and 3 are deterministic and non-adaptive
in the sense that they identify all points to be queried and precision of each query at the beginning
of the procedure. Our lower bound in Lemma 19 of O(d · c(ε)) applies only to deterministic and
non-adaptive algorithms. This naturally raises the question of whether it is possible to harness the
additional power that comes with adaptivity and randomization.

Question 3 Is there a gap between adaptive and non-adaptive algorithms for the problem of linear
reconstruction using a costly zero-order oracle? In particular, when the domain is either the ball or
the cube, can we get O(d · c(ε)) total cost? Is it possible to extend the lower bound in Lemma 19 to
adaptive / randomized algorithms?

Interestingly, for adaptive algorithms in the slightly more powerful model of arbitrary threshold
queries, we can perform linear reconstruction with O(d · log(1/ε)) total cost (whereas the best we
know how to do in the regular setting is O(d · log(d/ε)). In the threshold queries model we can
ask any query of the form “is f(x) < p?” at cost 1 (for x ∈ X and p ∈ [0, 1]). Note that while a
zero-order oracle with cost c(ε) = log(1/ε) can be simulated with threshold queries at the same cost,
it is unclear if the opposite is possible.

10
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Theorem 21 Let X = {x ∈ Rd; ‖x‖2 ≤ 1} and let f(x) = 〈v, x〉 for some v ∈ Rd with ‖v‖2 ≤ 1.
It is possible to obtain a vector v̂ such that ‖v − v̂‖2 ≤ ε with O(d log(1/ε)) threshold queries to
function f .

Proof Consider the following algorithm: initialize A = [d] as the set of active coordinates and let
t = 1. While A is non-empty, we query

f(ei)
?
≤ 2t√

d
,∀i ∈ A

where ei are the coordinate vectors. For the vectors for which the query returned true, we remove i
from A and use binary search starting from the range

[
0, 2t/

√
d
]

to find the value of f(ei) within

ε/
√
d precision.

After the algorithm finishes, we know have an estimate v̂i for each coordinate such that |v̂i − v̂| ≤
ε/
√
d and hence ‖v − v̂‖2 ≤ ε. We only need to bound the total number of threshold queries used.

For each t there can be only d/4t coordinates with wi > 2t/
√
d hence the set A has size at most

d/4t−1 at each t. For each coordinate the cost of estimating it is the log of the range divided by the
precision, which leads to a total cost of:

1
2

log2(d)∑
t=1

d

4t
log

(
2t/
√
d

ε/
√
d

)
≤
∞∑
t=1

d

4t

[
t log(2) + log

(
1

ε

)]
= O

(
d log

(
1

ε

))

Question 4 Is there a gap between the minimum cost achievable in the threshold query model and
the minimum cost achievable in the noisy zeroth order oracle model with cost c(ε) = log(1/ε)? Is it
possible to achieve total cost O(d log(1/ε)) for the ball in the oracle model? Is it possible to achieve
total cost O(d log(1/ε)) for arbitrary sets X in the threshold query model?

5.1. John’s theorem for simplices with positive dilation

Theorem 2 states that in any set of S points in Rd, it is possible to find d+ 1 points forming a simplex
T such that S is contained in a translate −O(d)T . Note that this requires a negative dilation factor.
Although it does not immediately help design better algorithms for the reconstruction problem, it is
natural to ask what is possible if we restrict ourselves to positive dilations only. Immediately, from
the fact that −T is contained within a translate of dT for any simplex T , Theorem 2 implies it is
possible to find a simplex T such that S is contained in a translate of O(d2)T . Interestingly, it is
unclear if it is possible to do better.

Question 5 Can we get a John’s theorem for simplices with positive dilation factor O(d)? In other
words, for every X ⊆ Rd, does there exist a simplex T with vertices in X such that X is contained
in some translate of O(d)T?

The only lower bound we are aware of is d, achieved by a ball in Rd (this also serves as a lower
bound for negative dilations).
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Lemma 22 LetBd be a ball in Rd. Then it is possible to find a simplex Td such that Td ⊆ Bd ⊆ dTd.
Moreover, d is the optimal factor for the ball.

The lemma follows from a theorem by Fejes-Toth (1964) (see also Klamkin and Tsintsifas
(1979)). For any given simplex T , it relates the radius of the maximum inscribed ball Bi (i.e. the ball
inside T of maximum radius) and Bo the minimum circumscribed ball (i.e the ball containing T of
minimum volume). The observation is that:

radius(Bo)
radius(Bi)

≥ d

and the ratio is tight for the regular simplex, which can be defined as follows. For d = 1 define
V1 = {−1, 1} ⊆ R and recursively:

Vd = {(1, 0)} ∪

{(
−1

d
, x ·

√
1− 1

d2

)
;x ∈ Vd−1

}
The regular simplex is Conv(Vd). Using this, we can easily prove Lemma 22:

Proof The theorem by Fejes-Toth states that for the regular simplex T , there is a ball B such that
1
dB ⊆ T ⊆ B and hence B ⊆ dT . It also implies that if T is any simplex T in the ball, then if for
scaling factor s we had T ⊆ B ⊆ x + sT then we would have: 1

s (B − x) ⊆ T ⊆ B and hence
s ≥ d.

Even for d = 2, we do not know if this lower bound is tight.

Question 6 For d = 2 is the circle the worst-case for John’s theorem for simplices? In other words,
given any set X ∈ R2, can you always find a triangle T with vertices in X so that X is contained in
some translate of 2T?
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