Learning for Revenue Optimization

Andrés Muñoz Medina
Renato Paes Leme

How to succeed in business with basic ML?

Complications

- What if the seller only sees a sample of the population?
- What if the seller doesn't know every buyer's valuation?
- Can buyers lie and don't provide their true valuation?
- What if valuations change as a function of features?

Outline

- Online revenue optimization
- Batch revenue optimization

Various flavors of this problem

- One buyer (pricing) vs multiple buyers (auctions)
- Fixed valuations (realizable), random valuations (stochastic) and worst-case valuations (adversarial)
- Contextual vs non-contextual
- Strategic vs myopic buyers

Definitions

- Valuation (v) : What a buyer is willing to pay for a good
- Bid: How much a buyer claims she is willing to pay
- Reserve price (p): Minimum price acceptable to the seller
-Revenue (Rev) :How much the seller gets from selling
- Interactions (T): Number of times buyer and seller interact

Single buyer

- Valuation $v_{t}=$ maximum willingness to pay
- Reserve price p_{t}
- Myopic (price taking buyer): buys whenever $v_{t} \geq p_{t}$
- i.e. doesn't reason about consequences of purchasing decision
\uparrow revenue function is $\operatorname{Rev}\left(p_{t}, v_{t}\right)=p_{t} \mathbb{1}_{v_{t} \geq p_{t}}$
- Strategic buyer: reasons about how purchasing decisions affect future prices

Single myopic buyer

- Realizable setting: valuation is fixed but unknown

$$
v_{t}=v \in[0,1]
$$

- Stochastic setting: valuations are sampled from an unknown distribution

$$
v_{t} \sim \mathcal{D}
$$

- Adversarial setting no assumption made on valuations
- Seller's goal: Minimize regret

Single myopic buyer

Fixed valuation

- $v_{t}=v \in[0,1]$
- Regret: $\mathcal{R}=T v-\sum_{t=1}^{T} \operatorname{Rev}\left(p_{t}, v_{t}\right)$

Binary Search

- At round k $S_{k}=\left[a_{k}, a_{k}+\Delta_{k}\right], s=0$ and $\Delta_{k+1}=\Delta_{k} / 2$
- While price accepted $p_{t}=a_{k}+s \Delta_{k+1} ; s=s+1$
- Rejection: Start new round a_{k+1} is last accepted price
- Stop $\Delta_{k}<\frac{1}{T}$, offer $p_{t}=a_{k}$ for all t

Fast Search

- Kleinberg and Leighton 2007
- At round $\mathrm{k} S_{k}=\left[a_{k}, a_{k}+\Delta_{k}\right], s=0$ and $\Delta_{k+1}=\Delta_{k}^{2}$
- While price accepted $p_{t}=a_{k}+s \Delta_{k+1} ; s=s+1$
- Rejection: Start new round a_{k+1} is last accepted price
- Stop $\Delta_{k}<\frac{1}{T}$, offer $p_{t}=a_{k}$ for all t

Kleinberg and Leighton search

- Analysis:
- in each round there is at most one no-sale
- for each sale, the regret is at most Δ_{k}
- there are at most $\Delta_{k} / \Delta_{k+1}=1 / \Delta_{k}$ sales
- the total regret per round is $O(1)$, since there are $\mathrm{O}(\log \log \mathrm{T})$ rounds before $\Delta_{k}<1 / T$ the total regret is $\mathrm{O}(\log \log T)$.

Kleinberg and Leighton search

- Regret $\mathcal{R} \in O(\log \log T)$
- Lower bound $\Omega(\log \log T)$

Multiple valuations

Bandits

- Expected revenue curve $\mathfrak{R}(p)=\mathbb{E}_{v}[\operatorname{Rev}(p, v)]$

Discretize

Apply Bandits

Random valuation

- Valuation $v_{t} \sim \mathcal{D}$
- Regret $\mathcal{R}=T \max _{p} \mathbb{E}_{p}\left[\operatorname{Rev}\left(p, v_{t}\right)\right]-\mathbb{E}\left[\sum_{t=1}^{T} \operatorname{Rev}\left(p_{t}, v_{t}\right)\right]$
- General strategy: discretize prices and treat each prices as a bandit
\downarrow without any assumptions $\tilde{O}\left(T^{2 / 3}\right)$: balance the discretization error and error in UCB
- can be improved for special families of distributions

Random valuation

- Expected revenue function $\mathbb{E}_{v \sim D}[\operatorname{Rev}(p, v)]$ is unimodal
- Unimodal Lipschitz bandits [Combes, Proutiere 2014] $\tilde{O}(\sqrt{T})$
- If the revenue curve is quadratic around the maximum, then Kleinberg and Leighton also give a $\tilde{O}(\sqrt{T})$ regret algorithm which is tight in this class.

Adversarial Valuations

- Compete against the best fixed price policy

$$
\mathcal{R}=\mathbb{E}\left[\max _{p^{*}} \sum_{t=1}^{T} \operatorname{Rev}\left(p^{*}, v_{t}\right)-\sum_{t=1}^{T} \operatorname{Rev}\left(p_{t}, v_{t}\right)\right]
$$

- General approach: discretize prices in K intervals and treat each as an arm. Use EXP3: [Kleinberg and Leighton 07]

$$
\begin{gathered}
\mathcal{R}=\tilde{O}(\sqrt{K T})+O(T / K)=\tilde{O}\left(T^{2 / 3}\right) \\
\\
\quad \text { EXP3 } \\
\text { regret } \\
\text { discretization } \\
\text { regret }
\end{gathered}
$$

Contextual Pricing

- Each product represented by a context $x_{t} \in \mathbb{R}^{d} ;\left\|x_{t}\right\|_{2} \leq 1$
- Buyer valuation is a dot-product: $v_{t}=\left\langle\theta, x_{t}\right\rangle$
- The weight vector θ is fixed but unknown, $\|\theta\|_{2} \leq 1$
- Regret is: $\mathcal{R}=\sum_{t=1}^{T} v_{t}-\operatorname{Rev}\left(p_{t}, v_{t}\right)$
- Can we draw a connection with online learning?

Contextual Pricing

- Stochastic gradient give regret $\tilde{O}(\sqrt{T})$ [Amin et al. 2014]
- Cohen, Lobel, Paes Leme, Vladu, Schneider: $\mathcal{R}=O(d \log T)$
- Algorithm based on the ellipsoid method

Keep knowledge sets:

$$
S_{0}=\left\{\theta \in \mathbb{R}^{d} ;\|\theta\|_{2} \leq 1\right\}
$$

\therefore For each x_{t} we know: $v_{t} \in\left[a_{t}, b_{t}\right]$

$$
\begin{aligned}
a_{t} & =\min _{\theta \in S_{t}}\left\langle\theta, x_{t}\right\rangle \\
b_{t} & =\max _{\theta \in S_{t}}\left\langle\theta, x_{t}\right\rangle
\end{aligned}
$$

Contextual Pricing

- Stochastic gradient give regret $\tilde{O}(\sqrt{T})$ [Amin et al. 2014]
- Cohen, Lobel, Paes Leme, Vladu, Schneider: $\mathcal{R}=O(d \log T)$
- Algorithm based on the ellipsoid method

If $\left|a_{t}-b_{t}\right| \leq 1 / T$ then we are done
If not, guess $p_{t} \in\left[a_{t}, b_{t}\right]$
Update the knowledge set to either:

$$
\begin{aligned}
S_{t+1} & =\left\{\theta \in S_{t} ;\left\langle\theta, x_{t}\right\rangle \leq p_{t}\right\} \\
S_{t+1} & =\left\{\theta \in S_{t} ;\left\langle\theta, x_{t}\right\rangle \geq p_{t}\right\}
\end{aligned}
$$

Contextual Pricing

- Stochastic gradient give regret $\tilde{O}(\sqrt{T})$ [Amin et al. 2014]
- Cohen, Lobel, Paes Leme, Vladu, Schneider: $\mathcal{R}=O(d \log T)$
- Algorithm based on the ellipsoid method

Theorem: Setting $p_{t}=\frac{1}{2}\left(a_{t}+b_{t}\right)$ has $\Theta\left(2^{d} \log T\right)$ regret.
Theorem: Ellipsoid regularization has $O\left(d^{2} \log T\right)$ regret.
Theorem: Cylindrification regularizer has $O(d \log T)$ regret.
Theorem: Squaring trick has regret

$$
O\left(d^{4} \log \log T\right)
$$

Strategic Buyers

Strategic buyers

- What happens if buyers know the seller will adapt prices?

Setup

- Buyer's valuation v_{t}
- Seller offers price p_{t}
- Buyer accepts $a_{t}=1$ or rejects $a_{t}=0$
- Discount factor γ
- Buyer optimizes $\mathbb{E}\left[\sum_{t=1}^{T} \gamma^{t} a_{t}\left(v_{t}-p_{t}\right)\right]$
- Seller maximizes revenue $\mathbb{E}\left[\sum_{t=1}^{T} a_{t} p_{t}\right]$

Three scenarios

- Fixed value $v_{t}=v$ [Amin et al. 2013, Mohri and Muñoz 2014, Drutsa 2017]
- Random valuation $v_{t} \sim D$ [Amin et al. 2013, Mohri and Muñoz 2015]
- Contextual valuation $v_{t}=\left\langle\theta, x_{t}\right\rangle$ with $x_{t} \sim D$ [Amin et al. 2014]

Game setup

- Seller selects pricing algorithm
- Announces algorithm to buyer
- Buyer can play strategically

Measuring regret

- Best fixed price in hindsight?

$$
\begin{array}{r}
\text { real value }=8 \\
\text { fake value }=1
\end{array}
$$

$$
\begin{aligned}
& p_{t}=4,2,1,1,1,1, \ldots \\
& a_{t}=0,0,1,1,1,1, \ldots
\end{aligned}
$$

Strategic Regret

- Compare against best possible outcome
- Fixed valuation $\mathcal{R}=T v-\sum_{t=1}^{T} a_{t} p_{t}$
- Random valuation $\mathcal{R}=T \max _{p} \mathbb{E}_{p}\left[\operatorname{Rev}\left(p, v_{t}\right)\right]-\mathbb{E}\left[a_{t} p_{t}\right]$
- Contextual valuation $\mathcal{R}=\mathbb{E}\left[\sum_{t=1}^{T} v_{t}-a_{t} p_{t}\right]$

The Buyer

- Knowledge of future incentivizes buyer to lie
- Lie: Buyer rejects even if his value is greater than reserve price

How can we reduce the number of lies?

Warm up

- Monotone algorithms [Amin et al. 2013]
- Choose $\beta<1$
- Offer prices $p_{t}=\beta^{t}$
- If accepted offer price for the remaining rounds

Warm up

- Decrease slowly to make lies costly
- Not too slow or accumulate regret
- Regret in $O\left(\frac{\sqrt{T}}{1-\gamma}\right)$
- Lower bound $\Omega\left(\log \log T+\frac{1}{1-\gamma}\right)$

Better guarantees

- Fast search with penalized rejections [Mohri and Muñoz 2014]
\downarrow Every time a price is rejected offer again for several rounds
\downarrow Regret in $O\left(\frac{\log T}{1-\gamma}\right)$
- Horizon independent guarantees [Drutsa 2017]
\downarrow Regret in $O\left(\frac{\log \log T}{1-\gamma}\right)$

Random valuations

- Valuation $v_{t} \sim D$
- Regret $\mathcal{R}=T \max _{p} \mathbb{E}_{p}\left[\operatorname{Rev}\left(p, v_{t}\right)\right]-\mathbb{E}\left[a_{t} p_{t}\right]$
- UCB type algorithm with slow decreasing confidence bounds [Mohri and Muñoz 2015]
\uparrow Regret in $O\left(\sqrt{T}+\frac{1}{\log 1 / \gamma} T^{1 / 4}\right)$

Contextual Valuation

- Explore exploit algorithm with longer explore time
- Amin et al. 2014
- Regret in $O\left(\frac{T^{2 / 3}}{\sqrt{\log (1 / \gamma)}}\right)$

Related Work

- Revenue optimization in second price auctions [CesaBianchi et al. 2013]
- Modeling buyers as regret minimizers [Nekipelov et al. 2015]
- Selling to no regret buyers [Heidari et al. 2017, Braverman et al. 2017]
- Selling to patient buyers [Feldman et al. 2016]

Open problems

- Contextual valuations without realizability assumptions
- Strategic buyers with adversarial valuations
- Online learning algorithms in general auctions [Roughgarden 2016]
- Multiple strategic buyers

Revenue from

 Multiple Buyers (Pricing -> Auctions)
Multiple buyers

Multi-buyer Setup

- N buyers with valuations $v_{i} \in[0,1]$ from distribution D_{i}
- Auction A is an allocation $x_{i}:[0,1]^{N} \rightarrow\{0,1\}$ and payment $p_{i}:[0,1]^{N} \rightarrow \mathbb{R}$
- Revenue: $\operatorname{Rev}(A)=\sum_{i=1}^{N} p_{i}$

๑ Goal: Maximize $\mathbb{E}_{v_{1}, \ldots, v_{N}}[\operatorname{Rev}(A)]$

- Notation: Given valuation vector $\left(v_{1}, \ldots, v_{N}\right)$

$$
\left(v, v_{-i}\right)=\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{N}\right)
$$

Conditions on auction

- Object can only be allocated once $\sum_{i=1}^{N} x_{i} \leq 1$
- Individual rationality (IR): $u_{i}=v_{i} x_{i}-p_{i} \geq 0$
- Incentive compatibility (IC):

$$
v_{i} x_{i}\left(v_{i}, v_{-i}\right)-p_{i}\left(v_{i}, v_{-i}\right) \geq v_{i} x_{i}\left(v, v_{-i}\right)-p_{i}\left(v, v_{-i}\right)
$$

Why IC?

- Buyers truly reveal how much they are willing to pay.
- Makes auction stable
- Allows learning

Some IC auctions

- Second price auction: allocate to the buyer with highest v_{i} and charge second highest value
- $x_{i}=1 \leftrightarrow v_{i}=\max _{j} v_{j}$
- $p_{i}=\max _{j \neq i} v_{j}$ if $x_{i}=1 ; 0$ otherwise

Second price auction

IC auctions

- Second price with reserve price r : allocate to the highest bidder if $v_{i} \geq r$. Charge $p_{i}=\max \left(r, \max _{j \neq i} v_{j}\right)$
- $x_{i}=1$ if $v_{i} \geq \max \left(\max _{j} v_{j}, r\right)$
$\rightarrow p_{i}=\max \left(\max _{j \neq i} v_{j}, r\right)$ if $x_{i}=1$

Second Price Auction With Reserve

Some IC auctions

- Myerson's auction: pick a monotone bid deformation $\phi_{i}(\cdot)$
- $x_{i}=1 \leftrightarrow \phi_{i}\left(v_{i}\right)=\max _{j} \phi_{j}\left(v_{j}\right)$ and $\phi_{i}\left(v_{i}\right)>0$
- $p_{i}=\phi_{i}^{-1}\left(\max \left(\max _{j \neq i} \phi_{j}\left(v_{j}\right), 0\right)\right)$ if $x_{i}=1,0$ otherwise
- If $\phi_{i}=\phi \forall i$
- $x_{i}=1 \leftrightarrow v_{i}=\max _{j} v_{j}$

$$
p_{i}=\phi^{-1} \max \left(\max _{j \neq i} \phi\left(v_{j}\right), 0\right)=\max \left(\max _{j \neq i} v_{j}, \phi^{-1}(0)\right.
$$

Myerson Auction

- Optimal auction if $v_{i} \sim D_{i}$ independently
- If \mathcal{D}_{i} is known, functions ϕ_{i} can be calculated exactly
- What about unknown distributions?
- Can we learn the optimal monotone functions?
- What is the sample complexity?

Sample Complexity of Auctions

- N bidders
- Valuations $v_{i} \sim D_{i}$ independent
- Observe $N m$ samples $v_{i, 1} \ldots v_{i, m} \sim D_{i}, \quad i \in\{1, \ldots, N\}$
- Find auction A such that

$$
\mathbb{E}[\operatorname{Rev}(A)] \geq(1-\epsilon) \max _{A} \mathbb{E}[\operatorname{Rev}(A)]
$$

- Can we use empirical revenue optimization?

$$
\max _{A} \frac{1}{m} \sum_{j=1}^{m} \sum_{i=1}^{N} p_{i}\left(v_{1 j}, \ldots, v_{N j}\right)
$$

Lower bounds on sample complexity

- Proof for a single buyer [Huang et al. 2015]
- Problem reduces to finding the optimal price for a distribution
- Need at least $\Omega\left(\frac{1}{\epsilon^{2}}\right)$ samples to get a $1-\epsilon+1$ approximation

Idea of the proof

- Two similar distributions

- $K L(D 1|\mid D 2)=\epsilon$
- Need $\frac{1}{\epsilon^{2}}$ samples to
distinguish them w.h.p

Revenue curves

- Approximately optimal revenue sets disjoint
- If algorithm optimizes revenue for both distributions. It must be able to distinguish them

Upper bounds on sample complexity

- Auctions are parametrized by increasing functions ϕ_{i}
- Pseudo-dimension of increasing functions is infinite!
- Restrict the class and measure approximation error

t-level auctions

t-level auctions

- Morgenstern and Roughgarden 2016
- Rank candidates using t-step functions
- Pseudo dimension bounded $O(N t \log N t)$
- Best t-level auction is a $\frac{1}{t}$ approximation

t-level auctions

- Theorem: Let $t=\Omega\left(\frac{1}{\epsilon}\right)$, using a sample of size $m=\Omega\left(\frac{N}{\epsilon^{3}}\right)$ the t-level auction \widehat{A} maximizing empirical revenue is a $1-\epsilon$ approximation to the optimal auction

Algorithm

- Cole and Roughgarden 2015, Huang et al. 2017
- In summary, optimize auctions over all increasing functions
- Proof for finite support
- Extension by discretization
- $O\left(\frac{1}{\epsilon^{3}}\right)$ samples

Is this enough?

Features in auctions

- In practice valuations are not i.i.d.
- They depend on features (context)
- Dependency is not realizable in general
- Algorithm of Huang et al. can be generalized to 1 feature

Display ads

- Millions of auctions
- Parametrized by publisher information, time of day,
- Dependency of valuations on features is not clear

Setup

- Single buyer auction, find optimal reserve price
- Observe sample $\left(x_{1}, v_{1}\right), \ldots\left(x_{m}, v_{m}\right)$ from distribution D over $\mathcal{X} \times[0,1]$
- Hypotheses $h: \mathcal{X} \rightarrow \mathbb{R}$
- Goal: Find $\max _{h \in H} \mathbb{E}_{(x, v) \sim D}[\operatorname{Rev}(h(x), v)]$

Revenue function

- Non-concave
- Non-differentiable
- Discontinuous
- Is it possible to learn?

Learning Theory

- Theorem [Mohri and Muñoz 2013] given a sample of size m , with high probability the following bound holds uniformly for all $h \in H$

$$
\left|\mathbb{E}[\operatorname{Rev}(h(x), v)]-\frac{1}{m} \sum_{i=1}^{m} \operatorname{Rev}\left(h\left(x_{i}\right), v_{i}\right)\right| \leq O\left(\sqrt{\frac{P \operatorname{Dim}(H)}{m}}\right)
$$

Space of linear functions?

Can we do empirical maximization?

The revenue function

Revenue function

- Non-concave
- Non-differentiable
- Discontinuous
- Is it possible to optimize?

Surrogates

- Loss similar to 0-1 loss
- Can we optimize a concave surrogate reward?

Calibration

- We say a function $R: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is calibrated with respect to Rev if for any distribution D we have

$$
\underset{r}{\operatorname{argmax}} \mathbb{E}_{v}[R(r, v)] \subset \underset{r}{\operatorname{argmax}} \mathbb{E}_{v}[\operatorname{Rev}(r, v)]
$$

Surrogates

- Theorem [Mohri and Muñoz 2013]: Any concave function that is calibrated is constant.

Continuous Surrogates

- Remove discontinuity

- Difference of concave functions
- DC algorithm for linear hypothesis class [Mohri and Muñoz 2013]

Optimization Issues

- Sequential algorithm
- Not scalable

Other class of functions?

Clustering

- Muñoz and Vassilvitskii 2017
- Show attainable revenue is related to variance of the distribution
- Cluster features to have low variance of valuations
- Revenue related to quality of cluster

Related problems

- Dynamic reserves for repeated auctions [Kanoria and Nazerzadeh 2017]
- New complexity measures [Syrgkanis 2017]
- Combinatorial auction sample complexity [Morgenstern and Roughgarden 2016, Balcan et al. 2016]
- Optimal auction design with neural networks [Dütting et al. 2017]

Conclusion

- Revenue optimization is a crucial practical problem
- Machine learning techniques have yielded new theory and algorithms on this field
- We need to better understand the relationship of buyers and sellers
- There are several open problems still out there

Thank you!

