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How to succeed in business 
with basic ML?
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Complications
๏ What if the seller only sees a sample of the 

population? 

๏ What if the seller doesn’t know every buyer’s 
valuation? 

๏ Can buyers lie and don’t provide their true valuation? 

๏ What if valuations change as a function of features?



Outline

๏ Online revenue optimization 

๏ Batch revenue optimization



Various flavors of this problem

๏ One buyer (pricing) vs multiple buyers (auctions) 

๏ Fixed valuations (realizable), random valuations (stochastic) 
and worst-case valuations (adversarial) 

๏ Contextual vs non-contextual 

๏ Strategic vs myopic buyers



Definitions
๏ Valuation (  ): What a buyer is willing to pay for a good  

๏ Bid: How much a buyer claims she is willing to pay  

๏ Reserve price (  ): Minimum price acceptable to the 
seller 

๏ Revenue (      ) :How much the seller gets from selling 

๏ Interactions (    ): Number of times buyer and seller 
interact
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Single buyer
๏ Valuation    = maximum willingness to pay 

๏ Reserve price  

๏ Myopic (price taking buyer): buys whenever 

✦ i.e. doesn’t reason about consequences of purchasing 
decision 

✦ revenue function is 

๏ Strategic buyer: reasons about how purchasing decisions 
affect future prices

vt

vt � pt

Rev(pt, vt) = pt1vt�pt

pt



๏ Realizable setting: valuation is fixed but unknown 

๏ Stochastic setting: valuations are sampled from an 
unknown distribution 

๏ Adversarial setting no assumption made on valuations 

๏ Seller’s goal: Minimize regret

Single myopic buyer

vt = v 2 [0, 1]

vt ⇠ D



Single myopic buyer
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Fixed valuation
๏ . 

๏ Regret: 

vt = v 2 [0, 1]

R = Tv �
TX

t=1

Rev(pt, vt)



๏ Rejection: Start new round        is last accepted priceak+1

Binary Search
๏ At round k                          ,         and 

๏ While price accepted                       ;pt = ak + s�k+1 s = s+ 1

�k+1 = �k/2s = 0Sk = [ak, ak +�k]

pt

ak ak +�k

pt

�k <
1

T
๏ Stop            , offer            for all t

pt

ak+1 ak+1 +�k+1

pt = ak

v



Fast Search

๏ At round k                          ,         and 

๏ Rejection: Start new round        is last accepted priceak+1

๏ While price accepted                       ;pt = ak + s�k+1 s = s+ 1

�k+1 = �2
ks = 0Sk = [ak, ak +�k]

pt

ak ak +�k

pt

�k <
1

T
๏ Stop            , offer            for all t

pt

ak+1

ak+1 +�k+1

pt = ak

pt pt pt

๏ Kleinberg and Leighton 2007
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Kleinberg and Leighton search
✦ Analysis: 

• in each round there is at most one no-sale 

• for each sale, the regret is at most 

• there are at most                          sales 

• the total regret per round is O(1), since there are  
O(log log T) rounds before                the total  
regret is O(log log T).   

�k

�k/�k+1 = 1/�k

�k < 1/T



Kleinberg and Leighton search

๏ Regret 

๏ Lower bound 

R 2 O(log log T )

⌦(log log T )



Multiple valuations



Bandits
๏ Expected revenue curve

10
Discretize Apply Bandits

EXP3 
UCBp

R(p) = Ev[Rev(p, v)]

R(p)



Random valuation
๏ Valuation            

๏ Regret  

๏ General strategy: discretize prices and treat each prices as  
a bandit 

✦ without any assumptions             : balance the 
discretization error and error in UCB 

✦ can be improved for special families of distributions

vt ⇠ D

Õ(T 2/3)

R = T max
p

Ep[Rev(p, vt)]� E
h TX

t=1

Rev(pt, vt)
i



Random valuation
๏ Expected revenue function                      is unimodal  

✦ Unimodal Lipschitz bandits [Combes, Proutiere 2014]  

๏ If the revenue curve is quadratic around the maximum, 
then Kleinberg and Leighton also give a            regret 
algorithm which is tight in this class.

Õ(
p
T )

Õ(
p
T )

Ev⇠D[Rev(p, v)]



Adversarial Valuations
๏ Compete against the best fixed price policy 

๏ General approach: discretize prices in K intervals and 
treat each as an arm. Use EXP3: [Kleinberg and Leighton 
07]

R = Õ(
p
KT ) +O(T/K) = Õ(T 2/3)

EXP3 
regret

discretization 
regret

R = E
h
max
p⇤

TX

t=1

Rev(p⇤, vt)�
TX

t=1

Rev(pt, vt)
i



Contextual Pricing
๏ Each product represented by a context  

๏ Buyer valuation is a dot-product:  

๏ The weight vector    is fixed but unknown,  

๏ Regret is:  

๏ Can we draw a connection with online learning?

xt 2 Rd; kxtk2  1

vt = h✓, xti

✓ k✓k2  1

R =
TX

t=1

vt �Rev(pt, vt)



Contextual Pricing
๏ Stochastic gradient give regret             [Amin et al. 2014] 

๏ Cohen, Lobel, Paes Leme, Vladu, Schneider:  

๏ Algorithm based on the ellipsoid method

Keep knowledge sets:

For each     we know:

R = O(d log T )

xt

S0 = {✓ 2 Rd; k✓k2  1}
xt vt 2 [at, bt]

at = min✓2Sth✓, xti
bt = max✓2Sth✓, xti

Õ(
p
T )



๏ Stochastic gradient give regret             [Amin et al. 2014] 

๏ Cohen, Lobel, Paes Leme, Vladu, Schneider:  

๏ Algorithm based on the ellipsoid method

Contextual Pricing

If                      then we are done. 
If not, guess 

|at � bt|  1/T

pt 2 [at, bt]
St+1

xt

Update the knowledge set to either:

St+1 = {✓ 2 St; h✓, xti  pt}
St+1 = {✓ 2 St; h✓, xti � pt}

Õ(
p
T )

R = O(d log T )



๏ Stochastic gradient give regret             [Amin et al. 2014] 

๏ Cohen, Lobel, Paes Leme, Vladu, Schneider:  

๏ Algorithm based on the ellipsoid method

Contextual Pricing

Theorem: Setting 
has                  regret.
Theorem: Ellipsoid regularization 
has                 regret.               O(d2 log T )
Theorem: Cylindrification regularizer 
has               regret.O(d log T )

pt =
1
2 (at + bt)

⇥(2d log T )

Theorem: Squaring trick has regret
O(d4 log log T )

R = O(d log T )

Õ(
p
T )



Strategic Buyers



Strategic buyers
๏ What happens if buyers know the seller will adapt prices?



Setup
๏ Buyer’s valuation 

๏ Seller offers price 

๏ Buyer accepts          or rejects 

๏ Discount factor 

๏ Buyer optimizes  

๏ Seller maximizes revenue

vt

pt

at = 1 at = 0

�

E
h TX

t=1

atpt
i

E
hPT

t=1 �
tat(vt � pt)

i



Three scenarios

๏ Fixed value            [Amin et al. 2013, Mohri and 
Muñoz 2014, Drutsa 2017] 

๏ Random valuation           [Amin et al. 2013, Mohri 
and Muñoz 2015] 

๏ Contextual valuation                with           [Amin et 
al. 2014]

vt = v

vt ⇠ D

xt ⇠ Dvt = h✓, xti



Game setup
๏ Seller selects pricing algorithm 

๏ Announces algorithm to buyer 

๏ Buyer can play strategically



Measuring regret
๏ Best fixed price in hindsight?

real value = 8  
fake value = 1

$4?
$2?
$1?

No
No

YES!

pt = 4, 2, 1, 1, 1, 1, . . .

at = 0, 0, 1, 1, 1, 1, . . .



Strategic Regret

๏ Compare against best possible outcome 

๏ Fixed valuation  

๏ Random valuation 

๏ Contextual valuation

R = Tv �
TX

t=1

atpt

R = E
h TX

t=1

vt � atpt
i

R = T max
p

Ep[Rev(p, vt)]� E[atpt]



The Buyer
๏ Knowledge of future incentivizes buyer to lie 

๏ Lie: Buyer rejects even if his value is greater than 
reserve price



How can we reduce 
the number of lies?



Warm up

๏ Monotone algorithms [Amin et al. 2013] 

๏ Choose  

๏ Offer prices  

๏ If accepted offer price for the remaining rounds 

� < 1

pt = �t



Warm up 

๏ Decrease slowly to make lies costly 

๏ Not too slow or accumulate regret 

๏ Regret in 

๏ Lower bound  

O

⇣ p
T

1� �

⌘

⌦
⇣
log log T +

1

1� �

⌘



Better guarantees
๏ Fast search with penalized rejections [Mohri and 

Muñoz 2014] 

✦ Every time a price is rejected offer again for several 
rounds 

✦  Regret in  

๏  Horizon independent guarantees [Drutsa 2017] 

✦ Regret in 

O

⇣ log T

1� �

⌘

O

⇣ log log T
1� �

⌘



Random valuations

๏ Valuation 

๏ Regret  

๏ UCB type algorithm with slow decreasing confidence 
bounds [Mohri and Muñoz 2015]  

✦ Regret in O
⇣p

T +
1

log 1/�
T

1/4
⌘

vt ⇠ D

R = T max
p

Ep[Rev(p, vt)]� E[atpt]



Contextual Valuation

๏ Explore exploit algorithm with longer explore time 

๏ Amin et al. 2014 

๏ Regret in O
⇣

T
2/3

p
log(1/�)

⌘



Related Work
๏ Revenue optimization in second price auctions [Cesa-

Bianchi et al. 2013] 

๏ Modeling buyers as regret minimizers [Nekipelov et al. 
2015] 

๏ Selling to no regret buyers [Heidari et al. 2017, Braverman 
et al. 2017] 

๏ Selling to patient buyers [Feldman et al. 2016]



Open problems

๏ Contextual valuations without realizability assumptions 

๏ Strategic buyers with adversarial valuations 

๏ Online learning algorithms in general auctions 
[Roughgarden 2016] 

๏ Multiple strategic buyers 



Revenue from  
Multiple Buyers 

(Pricing -> Auctions)
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Multi-buyer Setup
๏ N buyers with valuations              from distribution  

๏ Auction    is an allocation                           and 
payment 

๏ Revenue: 

๏ Goal: Maximize   

๏ Notation: Given valuation vector

vi 2 [0, 1]

xi : [0, 1]
N ! {0, 1}

pi : [0, 1]
N ! R

A

Rev(A) =
NX

i=1

pi

(v1, . . . , vN )

(v, v�i) = (v1, . . . , vi�1, v, vi+1, . . . , vN )

Di

Ev1,...,vN [Rev(A)]



Conditions on auction
๏ Object can only be allocated once 

๏ Individual rationality (IR): 

๏ Incentive compatibility (IC):

ui = vixi � pi � 0

NX

i=1

xi  1

vixi(vi, v�i)� pi(vi, v�i) � vixi(v, v�i)� pi(v, v�i)



Why IC?
๏ Buyers truly reveal how much they are willing to 

pay. 

๏ Makes auction stable 

๏ Allows learning



Some IC auctions
๏ Second price auction: allocate to the buyer with highest  

    and charge second highest value 

๏   . 

๏                      if          ;  0 otherwise  

vi

pi = maxj 6=i vj

xi = 1 $ vi = max
j

vj

xi = 1
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IC auctions
๏ Second price with reserve price r: allocate to the highest 

bidder if         . Charge  

✦           if  

✦                             if 

vi � r pi = max(r,maxj 6=i vj)

xi = 1 vi � max(max
j

vj , r)

pi = max(max
j 6=i

vj , r) xi = 1



r = $900

Second Price Auction With 
Reserve
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Myerson Auction
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Some IC auctions
๏ Myerson’s auction: pick a monotone bid deformation        

๏                                         and  

๏                                          if          , 0 otherwise 

๏ If  

✦    

�i(·)

xi = 1 $ �i(vi) = max
j

�j(vj) �i(vi) > 0

xi = 1pi = ��1
i (max(max

j 6=i
�j(vj), 0))

�i = � 8i

xi = 1 $ vi = max
j

vj

pi = ��1 max(max
j 6=i

�(vj), 0) = max(max
j 6=i

vj ,�
�1(0)



Myerson Auction
๏ Optimal auction if             independently 

๏ If      is known, functions    can be calculated exactly 

๏ What about unknown distributions? 

๏ Can we learn the optimal monotone functions? 

๏ What is the sample complexity?

Di �i

vi ⇠ Di



Sample Complexity of Auctions
๏     bidders 

๏ Valuations             independent 

๏ Observe       samples                       , 

๏ Find auction    such that 

๏ Can we use empirical revenue optimization?

N

vi,1 . . . vi,m ⇠ DiNm

A

E[Rev(A)] � (1� ✏)max
A

E[Rev(A)]

vi ⇠ Di

max
A

1

m

mX

j=1

NX

i=1

pi(v1j , . . . , vNj)

i 2 {1, . . . , N}



Lower bounds on sample 
complexity

๏ Proof for a single buyer [Huang et al. 2015] 

๏ Problem reduces to finding the optimal price for a 
distribution 

๏ Need at least           samples to get a              
approximation

⌦
⇣ 1

✏2

⌘
1� ✏



Idea of the proof
๏ Two similar distributions 

๏ . 

๏ Need       samples to 

distinguish them w.h.p

D2 KL(D1||D2) = ✏
1

✏2



Revenue curves
๏ Approximately optimal revenue 

sets disjoint

๏ If algorithm optimizes revenue 

for both distributions. It must 

be able to distinguish them

Ev⇠D2 [Rev(r, v)]

Ev⇠D1 [Rev(r, v)]

r



Upper bounds on sample 
complexity

๏ Auctions are parametrized by increasing functions  

๏ Pseudo-dimension of increasing functions is infinite! 

๏ Restrict the class and measure approximation error

�i
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t-level auctions

๏ Morgenstern and Roughgarden 2016 

๏ Rank candidates using t-step functions 

๏ Pseudo dimension bounded  

๏ Best t-level auction is a     approximation

O(Nt logNt)

1

t



t-level auctions

๏ Theorem: Let               , using a sample of size         

.                the t-level auction      maximizing 
empirical revenue is a           approximation to the 
optimal auction

t = ⌦
⇣1
✏

⌘

m = ⌦
⇣N
✏3

⌘

1� ✏

bA



Algorithm
๏ Cole and Roughgarden 2015, Huang et al. 2017 

๏ In summary, optimize auctions over all increasing 
functions 

๏ Proof for finite support 

๏ Extension by discretization 

๏           samplesO

⇣ 1

✏3

⌘



Is this enough?



Features in auctions

๏ In practice valuations are not i.i.d. 

๏ They depend on features (context) 

๏ Dependency is not realizable in general 

๏ Algorithm of Huang et al. can be generalized to 1 
feature



Display ads

๏ Millions of auctions 

๏ Parametrized by publisher information, time of day, 
… 

๏ Dependency of valuations on features is not clear



Setup

๏ Single buyer auction, find optimal reserve price 

๏ Observe sample                             from 
distribution     over  

๏ Hypotheses  

๏ Goal: Find

D

h : X ! R

(x1, v1), . . . (xm, vm)
X ⇥ [0, 1]

max
h2H

E(x,v)⇠D[Rev(h(x), v)]



Revenue function

๏ Non-concave 

๏ Non-differentiable 

๏ Discontinuous 

๏ Is it possible to learn?



Learning Theory

๏ Theorem [Mohri and Muñoz 2013] given a sample of 
size m, with high probability the following bound holds 
uniformly for all h 2 H

Space of linear functions?

���E[Rev(h(x), v)]� 1

m

mX

i=1

Rev(h(xi), vi)
���  O

⇣rPDim(H)

m

⌘



Can we do empirical 
maximization?



The revenue function



Revenue function

๏ Non-concave 

๏ Non-differentiable 

๏ Discontinuous 

๏ Is it possible to optimize?



Surrogates
๏ Loss similar to 0-1 loss  

๏ Can we optimize a concave surrogate reward?



Calibration

๏ We say a function                      is calibrated with 
respect to       if for any distribution     we have 

R : R⇥ R ! R
Rev D

argmax
r

Ev[R(r, v)] ⇢ argmax
r

Ev[Rev(r, v)]



Surrogates

๏ Theorem [Mohri and Muñoz 2013]: Any concave 
function that is calibrated is constant. 



Continuous Surrogates

๏ Remove discontinuity 

๏ Difference of concave 

functions 

๏ DC algorithm for linear 

hypothesis class [Mohri and 

Muñoz 2013]



Optimization Issues

๏ Sequential algorithm 

๏ Not scalable



Other class of 
functions?



Clustering

๏ Muñoz and Vassilvitskii 2017 

๏ Show attainable revenue is related to variance of the 
distribution 

๏ Cluster features to have low variance of valuations 

๏ Revenue related to quality of cluster



Related problems
๏ Dynamic reserves for repeated auctions [Kanoria and 

Nazerzadeh 2017] 

๏ New complexity measures [Syrgkanis 2017] 

๏ Combinatorial auction sample complexity [Morgenstern 
and Roughgarden 2016, Balcan et al. 2016] 

๏ Optimal auction design with neural networks [Dütting 
et al. 2017]



Conclusion

๏ Revenue optimization is a crucial practical problem 

๏ Machine learning techniques have yielded new theory 
and algorithms on this field 

๏ We need to better understand the relationship of 
buyers and sellers  

๏ There are several open problems still out there



Thank you!


